OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).
LINKS
Eric Weisstein's World of Mathematics, Logarithmically Concave Sequence.
EXAMPLE
The prime indices of 1365 are {2,3,4,6}, with first quotients (3/2,4/3,3/2), so 1365 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
8: {1,1,1}
16: {1,1,1,1}
24: {1,1,1,2}
27: {2,2,2}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
48: {1,1,1,1,2}
54: {1,2,2,2}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
81: {2,2,2,2}
84: {1,1,2,4}
88: {1,1,1,5}
96: {1,1,1,1,1,2}
100: {1,1,3,3}
MATHEMATICA
primeptn[n_]:=If[n==1, {}, Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]];
Select[Range[100], UnsameQ@@Divide@@@Reverse/@Partition[primeptn[#], 2, 1]&]
CROSSREFS
For multiplicities (prime signature) instead of quotients we have A130091.
The equal instead of distinct version is A342522.
The version counting strict divisor chains is A342530.
A167865 counts strict chains of divisors > 1 summing to n.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 23 2021
STATUS
approved