login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325368
Heinz numbers of integer partitions with distinct differences between successive parts.
23
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A325325.
EXAMPLE
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
8: {1,1,1}
16: {1,1,1,1}
24: {1,1,1,2}
27: {2,2,2}
30: {1,2,3}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
56: {1,1,1,4}
60: {1,1,2,3}
64: {1,1,1,1,1,1}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
81: {2,2,2,2}
88: {1,1,1,5}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
100: {1,1,3,3}
MATHEMATICA
primeptn[n_]:=If[n==1, {}, Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]];
Select[Range[100], UnsameQ@@Differences[primeptn[#]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 02 2019
STATUS
approved