login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130091 Numbers having in their canonical prime factorization mutually distinct exponents. 138
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This sequence does not contain any number of the form 36n-6 or 36n+6, as such numbers are divisible by 6 but not by 4 or 9. Consequently, this sequence does not contain 24 consecutive integers. The quest for the greatest number of consecutive integers in this sequence has ties to the ABC conjecture (see the MathOverflow link). - Danny Rorabaugh, Sep 23 2015

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities. The enumeration of these partitions by sum is given by A098859. - Gus Wiseman, May 04 2019

Aktaş and Ram Murty (2017) called these terms "special numbers" ("for lack of a better word"). They prove that the number of terms below x is ~ c*x/log(x), where c > 1 is a constant. - Amiram Eldar, Feb 25 2021

Sequence A005940(1+A328592(n)), n >= 1, sorted into ascending order. - Antti Karttunen, Apr 03 2022

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Kevser Aktaş and M. Ram Murty, On the number of special numbers, Proceedings - Mathematical Sciences, Vol. 127, No. 3 (2017), pp. 423-430; alternative link.

MathOverflow, Consecutive numbers with mutually distinct exponents in their canonical prime factorization

Carlo Sanna, On the number of distinct exponents in the prime factorization of an integer, arXiv:1902.09224 [math.NT], 2019.

Eric Weisstein's World of Mathematics, Prime Factorization

FORMULA

a(n) < A130092(n) for n<=150, a(n) > A130092(n) for n>150.

EXAMPLE

From Gus Wiseman, May 04 2019: (Start)

The sequence of terms together with their prime indices begins:

   1: {}

   2: {1}

   3: {2}

   4: {1,1}

   5: {3}

   7: {4}

   8: {1,1,1}

   9: {2,2}

  11: {5}

  12: {1,1,2}

  13: {6}

  16: {1,1,1,1}

  17: {7}

  18: {1,2,2}

  19: {8}

  20: {1,1,3}

  23: {9}

  24: {1,1,1,2}

  25: {3,3}

  27: {2,2,2}

(End)

MAPLE

filter:= proc(t) local f;

f:= map2(op, 2, ifactors(t)[2]);

nops(f) = nops(convert(f, set));

end proc:

select(filter, [$1..1000]); # Robert Israel, Mar 30 2015

MATHEMATICA

t[n_] := FactorInteger[n][[All, 2]]; Select[Range[400],  Union[t[#]] == Sort[t[#]] &]  (* Clark Kimberling, Mar 12 2015 *)

PROG

(PARI) isok(n) = {nbf = omega(n); f = factor(n); for (i = 1, nbf, for (j = i+1, nbf, if (f[i, 2] == f[j, 2], return (0)); ); ); return (1); } \\ Michel Marcus, Aug 18 2013

(PARI) isA130091(n) = issquarefree(factorback(apply(e->prime(e), (factor(n)[, 2])))); \\ Antti Karttunen, Apr 03 2022

CROSSREFS

Complement of A130092. A351564 is the characteristic function.

Subsequence of A351294.

Cf. A000961, A006939, A181818, A304686, A319161, A342028, A342029, A342030, A342031, A342032 (subsequences).

Cf. A005940, A048767, A048768, A056239, A098859, A112798, A118914, A181796, A217605, A325326, A325337, A325368, A327498, A327523, A328592, A336423, A336424, A336569, A336570, A336571, A343012, A343013.

Sequence in context: A325370 A329139 A351294 * A344609 A347454 A119848

Adjacent sequences:  A130088 A130089 A130090 * A130092 A130093 A130094

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, May 06 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 3 04:37 EDT 2022. Contains 355030 sequences. (Running on oeis4.)