

A118914


Table of the prime signatures (sorted lists of exponents of distinct prime factors) of the positive integers.


207



1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 6, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,3


COMMENTS

Since the prime factorization of 1 is the empty product (i.e., the multiplicative identity, 1), it follows that the prime signature of 1 is the empty multiset { }. (Cf. http://oeis.org/wiki/Prime_signature)
MathWorld wrongly defines the prime signature of 1 as {1}, which is actually the prime signature of primes.
The sequences A025487, A036035, A046523 consider the prime signatures of 1 and 2 to be distinct, implying { } for 1 and {1} for 2.
Since the prime signature of n is a partition of Omega(n), also true for Omega(1) = 0, the order of exponents is only a matter of convention (using reverse sorted lists of exponents would create a different sequence).
Here the multisets of nonzero exponents are sorted in increasing order; it is slightly more common to order them, as the parts of partitions, in decreasing order. This yields A212171.  M. F. Hasler, Oct 12 2018


LINKS

Reinhard Zumkeller, Rows n = 2..1000 of table, flattened
Eric Weisstein's World of Mathematics, Prime Signature
OEIS Wiki, Prime signatures
OEIS Wiki, Ordered prime signatures


EXAMPLE

The table starts:
n : prime signature of n (factorization of n)
1 : {}, (empty product)
2 : {1}, (2^1)
3 : {1}, (3^1)
4 : {2}, (2^2)
5 : {1}, (5^1)
6 : {1, 1}, (2^1 * 3^1)
7 : {1}, (5^1)
8 : {3}, (2^3)
9 : {2}, (3^2)
10 : {1, 1}, (2^1 * 5^1)
11 : {1}, (11^1)
12 : {1, 2}, (2^2 * 3^1, but exponents are sorted increasingly)
etc.


MATHEMATICA

primeSignature[n_] := Sort[ FactorInteger[n] , #1[[2]] < #2[[2]]&][[All, 2]]; Flatten[ Table[ primeSignature[n], {n, 2, 65}]](* JeanFrançois Alcover, Nov 16 2011 *)


PROG

(Haskell)
import Data.List (sort)
a118914 n k = a118914_tabf !! (n2) !! (k1)
a118914_row n = a118914_tabf !! (n2)
a118914_tabf = map sort $ tail a124010_tabf
 Reinhard Zumkeller, Mar 23 2014
(PARI) A118914_row(n)=vecsort(factor(n)[, 2]~) \\ M. F. Hasler, Oct 12 2018


CROSSREFS

Cf. A025487, A036035, A046523, A095904.
Cf. A124010.
Cf. A001221 (row lengths), A001222 (row sums).
Sequence in context: A254613 A129265 A030358 * A135063 A124010 A212171
Adjacent sequences: A118911 A118912 A118913 * A118915 A118916 A118917


KEYWORD

nonn,tabf


AUTHOR

Eric W. Weisstein, May 05 2006


EXTENSIONS

Corrected and edited by Daniel Forgues, Dec 22 2010


STATUS

approved



