login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254613
Expansion of f(-x^3)^4 / (f(-x) * f(-x^9)) in powers of x where f() is a Ramanujan theta function.
2
1, 1, 2, -1, 1, -1, 1, -3, -2, 1, 1, 0, -3, -1, 0, -2, -1, 0, 0, 1, 1, 0, 0, -2, 2, 0, -1, 2, -2, 2, 1, 2, 0, -1, 1, 1, -1, 3, 1, 0, -1, 3, 0, 0, 1, 1, 0, -3, -1, 0, -1, 2, 1, 1, 0, -1, -1, 3, 0, 1, 0, -2, -3, -2, -1, 0, -1, 0, 0, -2, 2, 2, -3, -1, 0, 0, 0
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/12) * eta(q^3)^4 / (eta(q) * eta(q^9)) in powers of q.
Euler transform of period 9 sequence [1, 1, -3, 1, 1, -3, 1, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (1296 t)) = 36 (t/i) f(t) where q = exp(2 Pi i t).
a(n) = b(12*n + 1) and A254612(n) = b(12*n + 5) / sqrt(3) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 if p == 7,11 (mod 12), b(p^e) = b(p)*b(p^(e-1)) - b(p^(e-2)) if p == 1,5 (mod 12) where b(p) = sqrt(3) * k12(x,y) * (if 3|y then 0 else 1) with 2*p = x^2 + 9*y^2 if p == 5 (mod 12) and b(p) = k12(9*y+x, y-x) + k12(9*y-x, y+x) with p = x^2 + 9*y^2 if p == 1 (mod 12) where k12(x,y) := Kronecker(12, x) * Kronecker(12, y). - Michael Somos, Feb 04 2015
G.f.: Product_{k>0} (1 - x^(3*k))^4 / ((1 - x^k) * (1 - x^(9*k))).
a(49*n + 4) = a(121*n + 10) = a(n).
a(n) = A254612(5*n) + (if n mod 5 = 2 then A254612((n-2)/5), otherwise 0). - Michael Somos, Feb 04 2015
EXAMPLE
G.f. = 1 + x + 2*x^2 - x^3 + x^4 - x^5 + x^6 - 3*x^7 - 2*x^8 + x^9 + ...
G.f. = q + q^13 + 2*q^25 - q^37 + q^49 - q^61 + q^73 - 3*q^85 - 2*q^97 + q^109 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^4 / (QPochhammer[ x] QPochhammer[ x^9]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^4 / (eta(x + A) * eta(x^9 + A)), n))};
(PARI) {a(n) = my(A, p, e, ap, w, k12, x, y, xy); if( n<0, 0, n = 12*n + 1; w = quadgen(12); (k12 = (u, v) -> kronecker( 12, u)*kronecker( 12, v)); (xy = (m) -> if(1, my(x); for(i=1, sqrtint( m\9), if( issquare( m - 9*i^2, &x), return([x, i]))))); A = factor(n); prod(k=1, matsize(A)[1], p = A[k, 1]; e = A[k, 2]; if( p<5, 0, p%12==7 || p%12==11, !(e%2), ap = if( p%12==5, [x, y] = xy(2*p); if(y%3==0, 0, w*k12(x, y)), [x, y] = xy(p); k12(9*y + x, y-x) + k12(9*y - x, y+x)); polchebyshev(e, 2, ap/2))))}; /* Michael Somos, Feb 04 2015 */
CROSSREFS
Cf. A254612.
Sequence in context: A335977 A334055 A365838 * A129265 A030358 A118914
KEYWORD
sign
AUTHOR
Michael Somos, Feb 03 2015
STATUS
approved