login
A370770
Triangle read by rows: T(n,k) is the number of k-trees with n unlabeled nodes.
11
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 6, 5, 2, 1, 1, 1, 1, 11, 12, 5, 2, 1, 1, 1, 1, 23, 39, 15, 5, 2, 1, 1, 1, 1, 47, 136, 58, 15, 5, 2, 1, 1, 1, 1, 106, 529, 275, 64, 15, 5, 2, 1, 1, 1, 1, 235, 2171, 1505, 331, 64, 15, 5, 2, 1, 1, 1
OFFSET
0,12
LINKS
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
Andrew Gainer-Dewar, Gamma-Species and the Enumeration of k-Trees, Electronic Journal of Combinatorics, Volume 19 (2012), #P45.
I. M. Gessel and A. Gainer-Dewar, Counting unlabeled k-trees, arXiv:1309.1429 [math.CO], 2013-2014.
I. M. Gessel and A. Gainer-Dewar, Counting unlabeled k-trees, J. Combin. Theory Ser. A 126 (2014), 177-193.
Andrew Howroyd, SageMath Program code (from Andrew Gainer-Dewar reference).
FORMULA
T(n,k) = A370771(n,k) + A370772(n,k) - A370773(n,k).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 2, 1, 1, 1;
1, 3, 2, 1, 1, 1;
1, 6, 5, 2, 1, 1, 1;
1, 11, 12, 5, 2, 1, 1, 1;
1, 23, 39, 15, 5, 2, 1, 1, 1;
1, 47, 136, 58, 15, 5, 2, 1, 1, 1;
1, 106, 529, 275, 64, 15, 5, 2, 1, 1, 1;
...
CROSSREFS
Cf. A135021 (labeled version), A370771, A370772, A370773.
Sequence in context: A030358 A118914 A135063 * A124010 A212171 A337255
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 01 2024
STATUS
approved