|
|
A000055
|
|
Number of trees with n unlabeled nodes.
(Formerly M0791 N0299)
|
|
220
|
|
|
1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867, 317955, 823065, 2144505, 5623756, 14828074, 39299897, 104636890, 279793450, 751065460, 2023443032, 5469566585, 14830871802, 40330829030, 109972410221, 300628862480, 823779631721, 2262366343746, 6226306037178
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Also, number of unlabeled 2-gonal 2-trees with n 2-gons.
Also counts classifications of n items that require exactly n-1 binary partitions; see Munafo link at A005646, also A171871 and A171872.
The 11 trees for n = 7 are illustrated at the Munafo web link.
This is also "Number of tree perfect graphs on n nodes" [see Hougardy]. - N. J. A. Sloane, Dec 04 2015
For n > 0, a(n) is the number of ways to arrange n-1 unlabeled non-intersecting circles on a sphere. - Vladimir Reshetnikov, Aug 25 2016
All trees for n=1 through n=12 are depicted in Chapter 1 of the Steinbach reference. On p. 6 appear encircled two trees (with n=10) which seem inequivalent only when considered as ordered (planar) trees. Earlier instances of such possibly (in)equivalent trees could appear from n=6 on (and from n=9 on without equivalence modulo plane symmetry) but are not drawn separately there. - M. F. Hasler, Aug 29 2017
|
|
REFERENCES
|
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 55.
N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 49.
A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 459).
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 58 and 244.
D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Wakhare, Tanay, Eric Wityk, and Charles R. Johnson. "The proportion of trees that are linear." Discrete Mathematics 343.10 (2020): 112008. Also arXiv:1901.08502v2. See Tables 1 and 2 (but beware errors).
|
|
LINKS
|
D. D. Grant, The stability index of graphs, pp. 29-52 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974. Gives first 45 terms.
Sebastian Piec, Krzysztof Malarz and Krzysztof Kulakowski. How to count trees?, arXiv:cond-mat/0501594 [cond-mat.stat-mech], 2005; Int. J. Modern Phys., C16 (2005) 1527-1534.
Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Overview of the following 12 Parts: Cover, Front matter, Chapter 1: Trees, Trees (cont'd: pt.2), Trees (cont'd: pt.3), Trees (cont'd: pt.4), Chapter 2: Centers and Centroids, Chap.2 (cont'd), Chapter 3: Random Trees, Chapter 4: Rooted Trees, Chapter 5: Homeomorphically Irreducible Trees, Chapter 6: Tables (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Eric Weisstein's World of Mathematics, Tree
|
|
FORMULA
|
G.f.: A(x) = 1 + T(x) - T^2(x)/2 + T(x^2)/2, where T(x) = x + x^2 + 2*x^3 + ... is the g.f. for A000081.
|
|
EXAMPLE
|
a(1) = 1 [o]; a(2) = 1 [o-o]; a(3) = 1 [o-o-o];
a(4) = 2 [o-o-o and o-o-o-o]
|
o
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + ...
|
|
MAPLE
|
G000055 := series(1+G000081-G000081^2/2+subs(x=x^2, G000081)/2, x, 31); A000055 := n->coeff(G000055, x, n); # where G000081 is g.f. for A000081 starting with n=1 term
with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> `if`(n=0, 1, b(n) -(add(b(k) *b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2):
seq(a(n), n=0..50);
# Program to create b-file b000055.txt:
A000081 := proc(n) option remember; local d, j;
if n <= 1 then n else
add(add(d*procname(d), d=numtheory[divisors](j))*procname(n-j), j=1..n-1)/(n-1);
fi end:
A000055 := proc(nmax) local a81, n, t, a, j, i ;
a81 := [seq(A000081(i), i=0..nmax)] ; a := [] ;
for n from 0 to nmax do
if n = 0 then
t := 1+op(n+1, a81) ;
else
t := op(n+1, a81) ;
fi;
if type(n, even) then
t := t-op(1+n/2, a81)^2/2 ;
t := t+op(1+n/2, a81)/2 ;
fi;
for j from 0 to (n-1)/2 do
t := t-op(j+1, a81)*op(n-j+1, a81) ;
od:
a := [op(a), t] ;
od:
a end:
|
|
MATHEMATICA
|
s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n-1, i] i, {i, 1, n-1}] / (n-1); Table[a[i] - Sum[a[j] a[i-j], {j, 1, i/2}] + If[OddQ[i], 0, a[i/2] (a[i/2] + 1)/2], {i, 1, 50}] (* Robert A. Russell *)
b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[d*b[d]*b[n-j], {j, 1, n-1}, {d, Divisors[j]}]/(n-1); a[0] = 1; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
|
|
PROG
|
(PARI) {a(n) = local(A, A1, an, i, t); if( n<2, n>=0, an = Vec(A = A1 = 1 + O('x^n)); for(m=2, n, i=m\2; an[m] = sum(k=1, i, an[k] * an[m-k]) + (t = polcoeff( if( m%2, A *= (A1 - 'x^i)^-an[i], A), m-1))); t + if( n%2==0, binomial( -polcoeff(A, i-1), 2)))}; /* Michael Somos */
(PARI)
N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
H(t)=subst(Ser(A000081, 't), 't, t);
x='x+O('x^N);
Vec( 1 + H(x) - 1/2*( H(x)^2 - H(x^2) ) )
(Magma)
N := 30; P<x> := PowerSeriesRing(Rationals(), N+1); f := func< A | x*&*[Exp(Evaluate(A, x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; G000055 := 1 + G - G^2/2 + Evaluate(G, x^2)/2; A000055 := Eltseq(G000055); // Geoff Baileu (geoff(AT)maths.usyd.edu.au), Nov 30 2009
(SageMath)
[len(list(graphs.trees(n))) for n in range(16)] # Peter Luschny, Mar 01 2020
(Haskell)
import Data.List (generic_index)
import Math.OEIS (getSequenceByID)
triangle x = (x * x + x) `div` 2
a000055 n = let {r = genericIndex (fromJust (getSequenceByID "A000081")); (m, nEO) = divMod n 2}
in r n - sum (zipWith (*) (map r [0..m]) (map r [n, n-1..]))
+ (1-nEO) * (triangle (r m + 1))
(Python)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice,core
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|