login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157904 INVERT transform of A000055. 3
1, 2, 4, 8, 17, 36, 78, 170, 375, 833, 1870, 4229, 9654, 22223, 51622, 120961, 286029, 682398, 1642821, 3990231, 9777678, 24166327, 60233185, 151350709, 383287499, 977918150, 2512805727, 6500178867, 16921248231, 44310852884, 116678914575 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..700

FORMULA

INVERT transform of A000055: (1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106,...).

EXAMPLE

a(3) = 8 = (1, 1, 1) dot (1, 2, 4) + 1 = 7 + 1 = 8; where the operation uses ascending terms of A000055: (1, 1, 1, 1, 2, 3, 6, 11,...) and an equal number of ongoing descending terms of A157904. Take the dot product and add to the next term of A000055. a(4) = 17 = (1, 1, 1, 1) dot (1, 2, 4, 8) + 2 = 15 + 2.

MAPLE

with(numtheory): b:= proc(n) option remember; local d, j; if n<=1 then n else (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1) fi end: t:= proc(n) option remember; local k; `if`(n=0, 1, b(n)- (add(b(k) *b(n-k), k=1..n-1) -`if`(type(n, odd), 0, b(n/2)))/2) end: a:= proc(n) option remember; local i; if n<=0 then 1 else add(t(i)*a(n-i-1), i=0..n) fi end: seq(a(n), n=0..35);  # Alois P. Heinz, Mar 31 2009

CROSSREFS

Cf. A000055, A157905.

Sequence in context: A190162 A275691 A251691 * A182901 A002845 A072925

Adjacent sequences:  A157901 A157902 A157903 * A157905 A157906 A157907

KEYWORD

nonn

AUTHOR

Gary W. Adamson, Mar 08 2009

EXTENSIONS

More terms from Alois P. Heinz, Mar 31 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 00:56 EDT 2018. Contains 316378 sequences. (Running on oeis4.)