login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251691
G.f.: G(F(x)) is a power series in x consisting entirely of positive integer coefficients such that G(F(x) - x^k) has negative coefficients for k>0, where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 and F(x) is g.f. of A251690.
4
1, 1, 2, 4, 8, 17, 36, 78, 169, 370, 813, 1793, 3971, 8817, 19631, 43804, 97938, 219357, 492072, 1105398, 2486320, 5598805, 12620832, 28477139, 64311189, 145354456, 328772330, 744155150, 1685434388, 3819629781, 8661130303, 19649713303, 44601771038, 101285994072, 230110466746
OFFSET
0,3
LINKS
FORMULA
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 17*x^5 + 36*x^6 + 78*x^7 + 169*x^8 + 370*x^9 + 813*x^10 + 1793*x^11 + 3971*x^12 +...
such that A(x) = G(F(x)), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 +...
and F(x) is the g.f. of A251690:
F(x) = x - x^2 - 2*x^3 - 2*x^4 - x^6 - 3*x^8 - 3*x^10 - 3*x^11 - 3*x^13 - 2*x^14 - 3*x^15 - x^16 - 2*x^17 - x^19 - 2*x^20 - 2*x^23 - 2*x^27 - 3*x^29 +...
CROSSREFS
Sequence in context: A262735 A190162 A275691 * A157904 A182901 A002845
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2014
STATUS
approved