OFFSET
0,2
FORMULA
G.f.: (1+4*x)*(1+4*x^2)*(1+x^2)*(1+x^3) / (1-2*x^2)^2.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 9*x^2 + 37*x^3 + 40*x^4 + 153*x^5 + 144*x^6 +...
The logarithm of the g.f. A(x) equals the series:
log(A(x)) = (2^2 + 3^2*x + x^2)/A(x) * x +
(4^2 + 12^2*x + 13^2*x^2 + 6^2*x^3 + x^4)/A(x)^2 * x^2/2 +
(8^2 + 36^2*x + 66^2*x^2 + 63^2*x^3 + 33^2*x^4 + 9^2*x^5 + x^6)/A(x)^3 * x^3/3 +
(16^2 + 96^2*x + 248^2*x^2 + 360^2*x^3 + 321^2*x^4 + 180^2*x^5 + 62^2*x^6 + 12^2*x^7 + x^8)/A(x)^4 * x^4/4 +
(32^2 + 240^2*x + 800^2*x^2 + 1560^2*x^3 + 1970^2*x^4 + 1683^2*x^5 + 985^2*x^6 + 390^2*x^7 + 100^2*x^8 + 15^2*x^9 + x^10)/A(x)^5 * x^5/5 +...
which involves the squares of coefficients A200536(n,2*n-k) in (2+3*x+x^2)^n.
PROG
(PARI) {a(n)=polcoeff( (1+4*x)*(1+4*x^2)*(1+x^2)*(1+x^3) / ((1-2*x^2)^2 +x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n, polcoeff((2+3*x+x^2+x*O(x^k))^m, k)^2 *x^k) *x^m/(A+x*O(x^n))^m/m)+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 23 2015
STATUS
approved