login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251689 G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} A200536(n,2*n-k)^2 * x^k] / A(x)^n * x^n/n ), where A200536(n,2*n-k) is the coefficient of x^k in (2+3*x+x^2)^n. 3
1, 4, 9, 37, 40, 153, 144, 468, 432, 1260, 1152, 3168, 2880, 7632, 6912, 17856, 16128, 40896, 36864, 92160, 82944, 205056, 184320, 451584, 405504, 986112, 884736, 2138112, 1916928, 4608000, 4128768, 9879552, 8847360, 21086208, 18874368, 44826624, 40108032, 94961664, 84934656, 200540160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..39.

FORMULA

G.f.: (1+4*x)*(1+4*x^2)*(1+x^2)*(1+x^3) / (1-2*x^2)^2.

EXAMPLE

G.f.: A(x) = 1 + 4*x + 9*x^2 + 37*x^3 + 40*x^4 + 153*x^5 + 144*x^6 +...

The logarithm of the g.f. A(x) equals the series:

log(A(x)) = (2^2 + 3^2*x + x^2)/A(x) * x +

(4^2 + 12^2*x + 13^2*x^2 + 6^2*x^3 + x^4)/A(x)^2 * x^2/2 +

(8^2 + 36^2*x + 66^2*x^2 + 63^2*x^3 + 33^2*x^4 + 9^2*x^5 + x^6)/A(x)^3 * x^3/3 +

(16^2 + 96^2*x + 248^2*x^2 + 360^2*x^3 + 321^2*x^4 + 180^2*x^5 + 62^2*x^6 + 12^2*x^7 + x^8)/A(x)^4 * x^4/4 +

(32^2 + 240^2*x + 800^2*x^2 + 1560^2*x^3 + 1970^2*x^4 + 1683^2*x^5 + 985^2*x^6 + 390^2*x^7 + 100^2*x^8 + 15^2*x^9 + x^10)/A(x)^5 * x^5/5 +...

which involves the squares of coefficients A200536(n,2*n-k) in (2+3*x+x^2)^n.

PROG

(PARI) {a(n)=polcoeff( (1+4*x)*(1+4*x^2)*(1+x^2)*(1+x^3) / ((1-2*x^2)^2 +x*O(x^n)), n)}

for(n=0, 40, print1(a(n), ", "))

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n, polcoeff((2+3*x+x^2+x*O(x^k))^m, k)^2 *x^k) *x^m/(A+x*O(x^n))^m/m)+x*O(x^n))); polcoeff(A, n)}

for(n=0, 40, print1(a(n), ", "))

CROSSREFS

Cf. A200537, A200536, A251688.

Sequence in context: A073977 A055872 A066924 * A249101 A289157 A149146

Adjacent sequences:  A251686 A251687 A251688 * A251690 A251691 A251692

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 13:55 EDT 2020. Contains 333305 sequences. (Running on oeis4.)