OFFSET
0,3
FORMULA
G.f.: (1+x)*(1+x^2)*(1+4*x^2)*(1+4*x^3) / (1-2*x^2)^2.
EXAMPLE
G.f.: A(x) = 1 + x + 9*x^2 + 13*x^3 + 40*x^4 + 72*x^5 + 144*x^6 +...
The logarithm of the g.f. A(x) equals the series:
log(A(x)) = (1 + 3^2*x + 2^2*x^2)/A(x) * x +
(1 + 6^2*x + 13^2*x^2 + 12^2*x^3 + 4^2*x^4)/A(x)^2 * x^2/2 +
(1 + 9^2*x + 62^2*x^2 + 63^2*x^3 + 66^2*x^4 + 36^2*x^5 + 8^2*x^6)/A(x)^3 * x^3/3 +
(1 + 12^2*x + 62^2*x^2 + 180^2*x^3 + 321^2*x^4 + 360^2*x^5 + 248^2*x^6 + 96^2*x^7 + 16^2*x^8)/A(x)^4 * x^4/4 +
(1 + 15^2*x + 100^2*x^2 + 390^2*x^3 + 985^2*x^4 + 1683^2*x^5 + 1970^2*x^6 + 1560^2*x^7 + 800^2*x^8 + 240^2*x^9 + 32^2*x^10)/A(x)^5 * x^5/5 +...
which involves the squares of coefficients A200536(n,k) in (1+3*x+2*x^2)^n.
MATHEMATICA
CoefficientList[Series[(1+x)*(1+x^2)*(1+4*x^2)*(1+4*x^3) / (1-2*x^2)^2, {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 11 2015 *)
Flatten[{1, 1, 9, 13, 40, Table[FullSimplify[9 * 2^(n/2-4) * (-8 - 7*Sqrt[2] + 4*n + 3*Sqrt[2]*n + (-1)^(n+1)*(8 - 7*Sqrt[2] + (-4 + 3*Sqrt[2])*n))], {n, 5, 40}]}] (* Vaclav Kotesovec, Feb 11 2015 *)
PROG
(PARI) {a(n)=polcoeff((1+x)*(1+x^2)*(1+4*x^2)*(1+4*x^3) / ((1-2*x^2)^2+x*O(x^n)), n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n, polcoeff((1+3*x+2*x^2+x*O(x^k))^m, k)^2 *x^k) *x^m/(A+x*O(x^n))^m/m)+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 18 2011
STATUS
approved