login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199257 G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} C(2*n,k)^2 * x^k * A(x)^k]* x^n/n ). 5
1, 1, 5, 18, 86, 408, 2075, 10787, 57655, 313643, 1733450, 9700574, 54867895, 313145033, 1801150861, 10430094658, 60758092753, 355795743385, 2093295146379, 12367548160650, 73346850194969, 436486017193373, 2605656191324094, 15599323024019360, 93634195155551584 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..24.

FORMULA

G.f. satisfies: A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = (1-x+x^2)*(1+x^2)^2/(1-x)^2.

G.f.: A(x) = (1/x)*Series_Reversion( x*(1-x)^2/((1-x+x^2)*(1+x^2)^2) ).

EXAMPLE

G.f.: A(x) = 1 + x + 5*x^2 + 18*x^3 + 86*x^4 + 408*x^5 + 2075*x^6 +...

such that A(x) = G(x*A(x)) where G(x) = (1-x+x^2)*(1+x^2)^2/(1-x)^2:

G(x) = 1 + x + 4*x^2 + 5*x^3 + 9*x^4 + 12*x^5 + 16*x^6 + 20*x^7 + 24*x^8 +...

...

Let A = x*A(x), then the logarithm of the g.f. A(x) equals the series:

log(A(x)) = (1 + 2^2*A + A^2)*x +

(1 + 4^2*A + 6^2*A^2 + 4^2*A^3 + A^4)*x^2/2 +

(1 + 6^2*A + 15^2*A^2 + 20^2*A^3 + 15^2*A^4 + 6^2*A^5 + A^6)*x^3/3 +

(1 + 8^2*A + 28^2*A^2 + 56^2*A^3 + 70^2*A^4 + 56^2*A^5 + 28^2*A^6 + 8^2*A^7 + A^8)*x^4/4 +

(1 + 10^2*A + 45^2*A^2 + 120^2*A^3 + 210^2*A^4 + 252^2*A^5 + 210^2*A^6 + 120^2*A^7 + 45^2*A^8 + 10^2*A^9 + A^10)*x^5/5 +...

which involves the squares of binomial coefficients C(2*n,k).

PROG

(PARI) {a(n)=local(A=1+x); A=1/x*serreverse(x*(1-x)^2/((1-x+x^2)*(1+x^2)^2+x*O(x^n))); polcoeff(A, n)}

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, 2*m, binomial(2*m, k)^2 *x^k*A^k) *x^m/m)+x*O(x^n))); polcoeff(A, n)}

CROSSREFS

Cf. A197601, A199248.

Sequence in context: A141733 A216723 A281159 * A188206 A156305 A213190

Adjacent sequences:  A199254 A199255 A199256 * A199258 A199259 A199260

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 23:18 EDT 2022. Contains 353959 sequences. (Running on oeis4.)