OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: exp( Sum_{n>=1} (1-x)^(4*n+1) *[Sum_{k>=0} C(2*n+k,k)^2 *x^k] *x^n/n ).
Logarithmic derivative equals A198059.
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 14*x^3 + 52*x^4 + 187*x^5 + 708*x^6 +...
The logarithm of the g.f. begins:
log(A(x)) = x + 9*x^2/2 + 28*x^3/3 + 121*x^4/4 + 496*x^5/5 + 2100*x^6/6 + 9017*x^7/7 + 38969*x^8/8 +...+ A198059(n)*x^n/n +...
and equals the sum of the series:
log(A(x)) = (1 + 2^2*x + x^2)*x
+ (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^2/2
+ (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^3/3
+ (1 + 8^2*x + 28^2*x^2 + 56^2*x^3 + 70^2*x^4 + 56^2*x^5 + 28^2*x^6 + 8^2*x^7 + x^8)*x^4/4
+ (1 + 10^2*x + 45^2*x^2 + 120^2*x^3 + 210^2*x^4 + 252^2*x^5 + 210^2*x^6 + 120^2*x^7 + 45^2*x^8 + 10^2*x^9 + x^10)*x^5/5 +...
which involves the squares of the coefficients in even powers of (1+x).
The logarithm of the g.f. can also be expressed as:
log(A(x)) = (1-x)^5*(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 +...)*x
+ (1-x)^9*(1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 +...)*x^2/2
+ (1-x)^13*(1 + 7^2*x + 28^2*x^2 + 84^2*x^3 + 210^2*x^4 +...)*x^3/3
+ (1-x)^17*(1 + 9^2*x + 45^2*x^2 + 165^2*x^3 + 495^2*x^4 +...)*x^4/4
+ (1-x)^21*(1 + 11^2*x + 66^2*x^2 + 286^2*x^3 + 1001^2*x^4 +...)*x^5/5 +...
which involves the squares of the coefficients in odd powers of 1/(1-x).
MATHEMATICA
nmax = 30; CoefficientList[Series[Exp[Sum[Hypergeometric2F1[-2*k, -2*k, 1, x]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 29 2022 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(2*m, k)^2 *x^k) *x^m/m)+x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (1-x+x*O(x^n))^(4*m+1) *sum(k=0, n-m+1, binomial(2*m+k, k)^2 *x^k+x*O(x^n)) *x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 20 2011
STATUS
approved