login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198059
a(n) = Sum_{k=1..n} binomial(2*k, n-k)^2 * n/k.
2
1, 9, 28, 121, 496, 2100, 9017, 38969, 169975, 744984, 3282005, 14513236, 64394500, 286519305, 1277975053, 5712392313, 25581765122, 114754116351, 515530099946, 2319115721576, 10445215621547, 47096725844837, 212569226371737, 960306310551860, 4341968468524371
OFFSET
1,2
LINKS
FORMULA
Logarithmic derivative of A197601.
L.g.f.: Sum_{n>=1} [Sum_{k=0..2*n} C(2*n,k)^2 *x^k] *x^n/n.
L.g.f.: Sum_{n>=1} (1-x)^(4*n+1) *[Sum_{k>=0} C(2*n+k,k)^2 *x^k] *x^n/n.
G.f.: sqrt((1 + (15*x^3+2*x^2-x+3)/w - (x^3-2*x^2+x-4)/sqrt(w))/2) - 2 where w = (x^3-2*x^2-3*x-1)*(x^3-2*x^2+5*x-1). - Mark van Hoeij, May 06 2013
EXAMPLE
L.g.f.: L(x) = x + 9*x^2/2 + 28*x^3/3 + 121*x^4/4 + 496*x^5/5 + 2100*x^6/6 + ...
where
exp(L(x)) = 1 + x + 5*x^2 + 14*x^3 + 52*x^4 + 187*x^5 + 708*x^6 + ... + A197601(n)*x^n + ...
The l.g.f. equals the series:
L(x) = (1 + 2^2*x + x^2)*x
+ (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^2/2
+ (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^3/3
+ (1 + 8^2*x + 28^2*x^2 + 56^2*x^3 + 70^2*x^4 + 56^2*x^5 + 28^2*x^6 + 8^2*x^7 + x^8)*x^4/4
+ (1 + 10^2*x + 45^2*x^2 + 120^2*x^3 + 210^2*x^4 + 252^2*x^5 + 210^2*x^6 + 120^2*x^7 + 45^2*x^8 + 10^2*x^9 + x^10)*x^5/5 + ...
which involves the squares of the coefficients in even powers of (1+x).
Also,
L(x) = (1-x)^5*(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 + ...)*x
+ (1-x)^9*(1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 + ...)*x^2/2
+ (1-x)^13*(1 + 7^2*x + 28^2*x^2 + 84^2*x^3 + 210^2*x^4 + ...)*x^3/3
+ (1-x)^17*(1 + 9^2*x + 45^2*x^2 + 165^2*x^3 + 495^2*x^4 + ...)*x^4/4
+ (1-x)^21*(1 + 11^2*x + 66^2*x^2 + 286^2*x^3 + 1001^2*x^4 + ...)*x^5/5 + ...
which involves the squares of the coefficients in odd powers of 1/(1-x).
MAPLE
w := (x^3-2*x^2-3*x-1)*(x^3-2*x^2+5*x-1);
sqrt((1 + (15*x^3+2*x^2-x+3)/w - (x^3-2*x^2+x-4)/sqrt(w))/2) - 2;
series(%, x=0, 30); # Mark van Hoeij, May 06 2013
MATHEMATICA
Table[Sum[Binomial[2k, n-k]^2 n/k, {k, n}], {n, 30}] (* Harvey P. Dale, Oct 25 2011 *)
PROG
(PARI) {a(n)=n*sum(k=1, n, binomial(2*k, n-k)^2/k)}
(PARI) {a(n)=n*polcoeff(sum(m=1, n, sum(k=0, n, binomial(2*m, k)^2 *x^k)*x^m/m)+x*O(x^n), n)}
(PARI) {a(n)=n*polcoeff(sum(m=1, n, (1-x+x*O(x^n))^(4*m+1) *sum(k=0, n-m+1, binomial(2*m+k, k)^2 *x^k)*x^m/m+x*O(x^n)), n)}
CROSSREFS
Cf. A197601 (exp).
Sequence in context: A294287 A349547 A085292 * A181090 A073706 A226976
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 20 2011
STATUS
approved