login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294287
Sum of the cubes of the parts in the partitions of n into two distinct parts.
7
0, 0, 9, 28, 100, 198, 441, 720, 1296, 1900, 3025, 4140, 6084, 7938, 11025, 13888, 18496, 22680, 29241, 35100, 44100, 52030, 64009, 74448, 90000, 103428, 123201, 140140, 164836, 185850, 216225, 241920, 278784, 309808, 354025, 391068, 443556, 487350, 549081
OFFSET
1,3
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} i^3 + (n-i)^3.
From David A. Corneth, Oct 27 2017: (Start)
For odd n, a(n) = binomial(n, 2)^2 = n^4/4 - n^3/2 + x^2/4.
For even n, a(n) = binomial(n, 2)^2 - n^3/8 = n^4/4 - 5*n^3/8 + x^2/4. (End)
G.f.: -x^3*(9 + 19*x + 36*x^2 + 22*x^3 + 9*x^4 + x^5) /(1+x)^4 /(x-1)^5. - R. J. Mathar, Nov 07 2017
From Colin Barker, Nov 21 2017: (Start)
a(n) = (1/16)*(n^2*(4 - (9 + (-1)^n)*n + 4*n^2)).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>9.
(End)
MATHEMATICA
Table[Sum[i^3 + (n - i)^3, {i, Floor[(n-1)/2]}], {n, 40}]
PROG
(PARI) first(n) = my(res = vector(n, i, binomial(i, 2)^2)); forstep(i=2, n, 2, res[i] -= i^3/8); res \\ David A. Corneth, Oct 27 2017
(PARI) a(n) = sum(i=1, (n-1)\2, i^3 + (n-i)^3); \\ Michel Marcus, Nov 19 2017
(PARI) concat(vector(2), Vec(x^3*(9 + 19*x + 36*x^2 + 22*x^3 + 9*x^4 + x^5) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Nov 21 2017
CROSSREFS
Cf. A294270.
Sequence in context: A296601 A294567 A053819 * A349547 A085292 A198059
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 26 2017
STATUS
approved