login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the cubes of the parts in the partitions of n into two distinct parts.
7

%I #27 Jan 04 2018 06:35:34

%S 0,0,9,28,100,198,441,720,1296,1900,3025,4140,6084,7938,11025,13888,

%T 18496,22680,29241,35100,44100,52030,64009,74448,90000,103428,123201,

%U 140140,164836,185850,216225,241920,278784,309808,354025,391068,443556,487350,549081

%N Sum of the cubes of the parts in the partitions of n into two distinct parts.

%H Colin Barker, <a href="/A294287/b294287.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-4,-6,6,4,-4,-1,1).

%F a(n) = Sum_{i=1..floor((n-1)/2)} i^3 + (n-i)^3.

%F From _David A. Corneth_, Oct 27 2017: (Start)

%F For odd n, a(n) = binomial(n, 2)^2 = n^4/4 - n^3/2 + x^2/4.

%F For even n, a(n) = binomial(n, 2)^2 - n^3/8 = n^4/4 - 5*n^3/8 + x^2/4. (End)

%F G.f.: -x^3*(9 + 19*x + 36*x^2 + 22*x^3 + 9*x^4 + x^5) /(1+x)^4 /(x-1)^5. - _R. J. Mathar_, Nov 07 2017

%F From _Colin Barker_, Nov 21 2017: (Start)

%F a(n) = (1/16)*(n^2*(4 - (9 + (-1)^n)*n + 4*n^2)).

%F a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>9.

%F (End)

%t Table[Sum[i^3 + (n - i)^3, {i, Floor[(n-1)/2]}], {n, 40}]

%o (PARI) first(n) = my(res = vector(n, i, binomial(i,2)^2)); forstep(i=2, n, 2, res[i] -= i^3/8); res \\ _David A. Corneth_, Oct 27 2017

%o (PARI) a(n) = sum(i=1, (n-1)\2, i^3 + (n-i)^3); \\ _Michel Marcus_, Nov 19 2017

%o (PARI) concat(vector(2), Vec(x^3*(9 + 19*x + 36*x^2 + 22*x^3 + 9*x^4 + x^5) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ _Colin Barker_, Nov 21 2017

%Y Cf. A294270.

%K nonn,easy

%O 1,3

%A _Wesley Ivan Hurt_, Oct 26 2017