login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A294286
Sum of the squares of the parts in the partitions of n into two distinct parts.
9
0, 0, 5, 10, 30, 46, 91, 124, 204, 260, 385, 470, 650, 770, 1015, 1176, 1496, 1704, 2109, 2370, 2870, 3190, 3795, 4180, 4900, 5356, 6201, 6734, 7714, 8330, 9455, 10160, 11440, 12240, 13685, 14586, 16206, 17214, 19019, 20140, 22140, 23380, 25585, 26950, 29370
OFFSET
1,3
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} i^2 + (n-i)^2.
From David A. Corneth, Oct 27 2017: (Start)
For odd n, a(n) = n^3/3 - n^2/2 + n/6 = A000330(n + 1).
For even n, a(n) = n^3/3 - 3*n^2/4 + n/6.
(End)
From Colin Barker, Nov 04 2017: (Start)
G.f.: x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7.
(End)
a(n) = n*(2*n^2-3*n*(5+(-1)^n)/4+1)/6. - Wesley Ivan Hurt, Dec 03 2023
EXAMPLE
For n = 6, there are two ways of partitioning 6 into two distinct parts: 6 = 1+5 and 6 = 2+4. So a(6) = 1^2 + 5^2 + 2^2 + 4^2 = 46.
For n = 7, there are three ways of partitioning 7 into two distinct parts: 7 = 1+6, 7 = 2+5, and 7 = 3+4. So a(7) = 1^2 + 6^2 + 2^2 + 5^2 + 3^2 + 4^2 = 91. - Michael B. Porter, Nov 05 2017
MATHEMATICA
Table[Sum[i^2 + (n - i)^2, {i, Floor[(n-1)/2]}], {n, 40}]
Table[Total[Flatten[Select[IntegerPartitions[n, {2}], #[[1]]!=#[[2]]&]]^2], {n, 50}] (* Harvey P. Dale, Dec 02 2022 *)
PROG
(PARI) first(n) = my(res = vector(n, i, i^3 / 3 - i^2 / 2 + i / 6)); forstep(i = 2, n, 2, res[i] -= i^2 >> 2); res \\ David A. Corneth, Oct 27 2017
(PARI) concat(vector(2), Vec(x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3) + O(x^60))) \\ Colin Barker, Nov 04 2017
(Magma) [n*(2*n^2-3*n*(5+(-1)^n)/4+1)/6 : n in [1..60]]; // Wesley Ivan Hurt, Dec 03 2023
CROSSREFS
Cf. A000330.
Sequence in context: A005514 A069921 A053818 * A133629 A156302 A156234
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 26 2017
STATUS
approved