Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Dec 03 2023 10:14:26
%S 0,0,5,10,30,46,91,124,204,260,385,470,650,770,1015,1176,1496,1704,
%T 2109,2370,2870,3190,3795,4180,4900,5356,6201,6734,7714,8330,9455,
%U 10160,11440,12240,13685,14586,16206,17214,19019,20140,22140,23380,25585,26950,29370
%N Sum of the squares of the parts in the partitions of n into two distinct parts.
%H Iain Fox, <a href="/A294286/b294286.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Colin Barker)
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).
%F a(n) = Sum_{i=1..floor((n-1)/2)} i^2 + (n-i)^2.
%F From _David A. Corneth_, Oct 27 2017: (Start)
%F For odd n, a(n) = n^3/3 - n^2/2 + n/6 = A000330(n + 1).
%F For even n, a(n) = n^3/3 - 3*n^2/4 + n/6.
%F (End)
%F From _Colin Barker_, Nov 04 2017: (Start)
%F G.f.: x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3).
%F a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7.
%F (End)
%F a(n) = n*(2*n^2-3*n*(5+(-1)^n)/4+1)/6. - _Wesley Ivan Hurt_, Dec 03 2023
%e For n = 6, there are two ways of partitioning 6 into two distinct parts: 6 = 1+5 and 6 = 2+4. So a(6) = 1^2 + 5^2 + 2^2 + 4^2 = 46.
%e For n = 7, there are three ways of partitioning 7 into two distinct parts: 7 = 1+6, 7 = 2+5, and 7 = 3+4. So a(7) = 1^2 + 6^2 + 2^2 + 5^2 + 3^2 + 4^2 = 91. - _Michael B. Porter_, Nov 05 2017
%t Table[Sum[i^2 + (n - i)^2, {i, Floor[(n-1)/2]}], {n, 40}]
%t Table[Total[Flatten[Select[IntegerPartitions[n,{2}],#[[1]]!=#[[2]]&]]^2],{n,50}] (* _Harvey P. Dale_, Dec 02 2022 *)
%o (PARI) first(n) = my(res = vector(n, i, i^3 / 3 - i^2 / 2 + i / 6)); forstep(i = 2, n, 2, res[i] -= i^2 >> 2); res \\ _David A. Corneth_, Oct 27 2017
%o (PARI) concat(vector(2), Vec(x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3) + O(x^60))) \\ _Colin Barker_, Nov 04 2017
%o (Magma) [n*(2*n^2-3*n*(5+(-1)^n)/4+1)/6 : n in [1..60]]; // _Wesley Ivan Hurt_, Dec 03 2023
%Y Cf. A000330.
%K nonn,easy
%O 1,3
%A _Wesley Ivan Hurt_, Oct 26 2017