login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} binomial(2*k, n-k)^2 * n/k.
2

%I #18 Feb 11 2019 01:42:42

%S 1,9,28,121,496,2100,9017,38969,169975,744984,3282005,14513236,

%T 64394500,286519305,1277975053,5712392313,25581765122,114754116351,

%U 515530099946,2319115721576,10445215621547,47096725844837,212569226371737,960306310551860,4341968468524371

%N a(n) = Sum_{k=1..n} binomial(2*k, n-k)^2 * n/k.

%H G. C. Greubel, <a href="/A198059/b198059.txt">Table of n, a(n) for n = 1..1000</a>

%F Logarithmic derivative of A197601.

%F L.g.f.: Sum_{n>=1} [Sum_{k=0..2*n} C(2*n,k)^2 *x^k] *x^n/n.

%F L.g.f.: Sum_{n>=1} (1-x)^(4*n+1) *[Sum_{k>=0} C(2*n+k,k)^2 *x^k] *x^n/n.

%F G.f.: sqrt((1 + (15*x^3+2*x^2-x+3)/w - (x^3-2*x^2+x-4)/sqrt(w))/2) - 2 where w = (x^3-2*x^2-3*x-1)*(x^3-2*x^2+5*x-1). - _Mark van Hoeij_, May 06 2013

%e L.g.f.: L(x) = x + 9*x^2/2 + 28*x^3/3 + 121*x^4/4 + 496*x^5/5 + 2100*x^6/6 + ...

%e where

%e exp(L(x)) = 1 + x + 5*x^2 + 14*x^3 + 52*x^4 + 187*x^5 + 708*x^6 + ... + A197601(n)*x^n + ...

%e The l.g.f. equals the series:

%e L(x) = (1 + 2^2*x + x^2)*x

%e + (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^2/2

%e + (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^3/3

%e + (1 + 8^2*x + 28^2*x^2 + 56^2*x^3 + 70^2*x^4 + 56^2*x^5 + 28^2*x^6 + 8^2*x^7 + x^8)*x^4/4

%e + (1 + 10^2*x + 45^2*x^2 + 120^2*x^3 + 210^2*x^4 + 252^2*x^5 + 210^2*x^6 + 120^2*x^7 + 45^2*x^8 + 10^2*x^9 + x^10)*x^5/5 + ...

%e which involves the squares of the coefficients in even powers of (1+x).

%e Also,

%e L(x) = (1-x)^5*(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 + ...)*x

%e + (1-x)^9*(1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 + ...)*x^2/2

%e + (1-x)^13*(1 + 7^2*x + 28^2*x^2 + 84^2*x^3 + 210^2*x^4 + ...)*x^3/3

%e + (1-x)^17*(1 + 9^2*x + 45^2*x^2 + 165^2*x^3 + 495^2*x^4 + ...)*x^4/4

%e + (1-x)^21*(1 + 11^2*x + 66^2*x^2 + 286^2*x^3 + 1001^2*x^4 + ...)*x^5/5 + ...

%e which involves the squares of the coefficients in odd powers of 1/(1-x).

%p w := (x^3-2*x^2-3*x-1)*(x^3-2*x^2+5*x-1);

%p sqrt((1 + (15*x^3+2*x^2-x+3)/w - (x^3-2*x^2+x-4)/sqrt(w))/2) - 2;

%p series(%,x=0,30); # _Mark van Hoeij_, May 06 2013

%t Table[Sum[Binomial[2k,n-k]^2 n/k,{k,n}],{n,30}] (* _Harvey P. Dale_, Oct 25 2011 *)

%o (PARI) {a(n)=n*sum(k=1,n,binomial(2*k,n-k)^2/k)}

%o (PARI) {a(n)=n*polcoeff(sum(m=1, n, sum(k=0, n, binomial(2*m, k)^2 *x^k)*x^m/m)+x*O(x^n), n)}

%o (PARI) {a(n)=n*polcoeff(sum(m=1, n, (1-x+x*O(x^n))^(4*m+1) *sum(k=0, n-m+1, binomial(2*m+k, k)^2 *x^k)*x^m/m+x*O(x^n)), n)}

%Y Cf. A197601 (exp).

%K nonn

%O 1,2

%A _Paul D. Hanna_, Oct 20 2011