login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198062
Array read by antidiagonals, m>=0, n>=0, k>=0, A(m, n, k) = sum{j=0..m} sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).
1
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 4, 2, 1, 0, 1, 1, 8, 3, 2, 1, 0, 1, 1, 16, 4, 4, 3, 1, 0, 1, 1, 32, 5, 8, 9, 3, 1, 0, 1, 1, 64, 6, 16, 27, 7, 3, 1, 0, 1, 1, 128, 7, 32, 81, 15, 7, 3, 1, 0, 1, 1, 256, 8, 64, 243, 31, 15, 9, 4, 1, 0, 1, 1, 512, 9
OFFSET
0,14
LINKS
FORMULA
A007318(n,k) = A(0,n+1,k+1)*C(n,k)^1/(k+1)^0,
A103371(n,k) = A(1,n+1,k+1)*C(n,k)^2/(k+1)^1,
A194595(n,k) = A(2,n+1,k+1)*C(n,k)^3/(k+1)^2,
A197653(n,k) = A(3,n+1,k+1)*C(n,k)^4/(k+1)^3,
A197654(n,k) = A(4,n+1,k+1)*C(n,k)^5/(k+1)^4,
A197655(n,k) = A(5,n+1,k+1)*C(n,k)^6/(k+1)^5.
EXAMPLE
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
-------------------------------------------------
[0] 1 1 1 1 1 1 1 1 1 1 A000012
[1] 0 1 1 2 2 2 3 3 3 3 A003056
[2] 0 1 1 4 3 4 9 7 7 9 A073254
[3] 0 1 1 8 4 8 27 15 15 27 A198063
[4] 0 1 1 16 5 16 81 31 31 81 A198064
[5] 0 1 1 32 6 32 243 63 63 243 A198065
MAPLE
A198062_RowAsTriangle := proc(m) local pow; pow :=(a, b)->`if`(a=0 and b=0, 1, a^b): proc(n, k) local i, j; add(add((-1)^(j + i)*binomial(i, j)*pow(n, j)* pow(k, m-j), i=0..m), j=0..m) end: end:
for m from 0 to 2 do seq(print(seq(A198062_RowAsTriangle(m)(n, k), k=0..n)), n=0..5) od;
MATHEMATICA
max = 9; RowAsTriangle[m_][n_, k_] := Module[{pow}, pow[a_, b_] := If[a == 0 && b == 0, 1, a^b]; Module[{i, j}, Sum[Sum[(-1)^(j+i)*Binomial[i, j]*pow[n, j]*pow[k, m-j], {i, 0, m}], {j, 0, m}]]]; t = Flatten /@ Table[RowAsTriangle[m][n, k], {m, 0, max}, {n, 0, max}, {k, 0, n}]; Table[t[[n-k+1, k+1]], {n, 0, max}, {k, 0, n }] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
CROSSREFS
Sequence in context: A334895 A355262 A355576 * A347617 A226690 A318557
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 02 2011
STATUS
approved