login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198064
Triangle read by rows (n >= 0, 0 <= k <= n, m = 4); T(n,k) = Sum{j=0..m} Sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).
6
0, 1, 1, 16, 5, 16, 81, 31, 31, 81, 256, 121, 80, 121, 256, 625, 341, 211, 211, 341, 625, 1296, 781, 496, 405, 496, 781, 1296, 2401, 1555, 1031, 781, 781, 1031, 1555, 2401, 4096, 2801, 1936, 1441, 1280, 1441, 1936, 2801, 4096, 6561, 4681, 3355, 2511, 2101
OFFSET
0,4
FORMULA
T(n,k) = k^4-2*k^3*n+4*k^2*n^2-3*k*n^3+n^4.
T(n,0) = T(n,n) = n^m = n^4 = A000583(n).
T(2n,n) = (m+1)n^m = 5n^4.
T(2n+1,n+1) = (n+1)^(m+1)-n^(m+1) = (n+1)^5-n^5 = A022521(n).
Sum{k=0..n} T(n,k) = (16n^5+30n^4+15n^3-n)/30.
T(n+1,k+1)C(n,k)^5/(k+1)^4 = A197654(n,k).
EXAMPLE
[0] 0
[1] 1, 1
[2] 16, 5, 16
[3] 81, 31, 31, 81
[4] 256, 121, 80, 121, 256
[5] 625, 341, 211, 211, 341, 625
[6] 1296, 781, 496, 405, 496, 781, 1296
[7] 2401, 1555, 1031, 781, 781, 1031, 1555, 2401
MAPLE
A198064 := (n, k) -> k^4-2*k^3*n+4*k^2*n^2-3*k*n^3+n^4:
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 26 2011
STATUS
approved