login
A355262
Array of Fuss-Catalan numbers read by ascending antidiagonals, A(n, k) = binomial(k*n + 1, k)/(k*n + 1).
7
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 5, 1, 0, 1, 1, 4, 12, 14, 1, 0, 1, 1, 5, 22, 55, 42, 1, 0, 1, 1, 6, 35, 140, 273, 132, 1, 0, 1, 1, 7, 51, 285, 969, 1428, 429, 1, 0, 1, 1, 8, 70, 506, 2530, 7084, 7752, 1430, 1, 0
OFFSET
0,13
COMMENTS
An alternative definition is: the Fuss-Catalan sequences (A(n, k), k >= 0 ) are the main diagonals of the Fuss-Catalan triangles of order n - 1. See A355173 for the definition of a Fuss-Catalan triangle.
REFERENCES
N. I. Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, vol.9 (1791), 243-251.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1990, (Eqs. 5.70, 7.66, and sec. 7.5, example 5).
LINKS
Per Alexandersson, Frether Getachew Kebede, Samuel Asefa Fufa, and Dun Qiu, Pattern-Avoidance and Fuss-Catalan Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.4.2.
Joerg Arndt, Matters Computational (The Fxtbook), pp. 337-338.
Jean-Luc Baril, Mireille Bousquet-Mélou, Sergey Kirgizov, and Mehdi Naima, The ascent lattice on Dyck paths, arXiv:2409.15982 [math.CO], 2024. See p. 6.
Jean-Christophe Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers, Chapter 7.
D. E. Knuth, Convolution polynomials, arXiv:math/9207221 [math.CA]; Mathematica J. 2.1 (1992), no. 4, 67-78.
Donald Knuth's 20th Annual Christmas Tree Lecture, (3/2)-ary Trees, Stanford Online, Video 2014.
Wojciech Młotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Math. 15:939-955, (2010).
FORMULA
A(n, k) = (1/k!) * Product_{j=1..k-1} (k*n + 1 - j).
A(n, k) = (binomial(k*n, k) + binomial(k*n, k-1)) / (k*n + 1).
Let B(t, z) = Sum_{k>=0} binomial(k*t + 1, k)*z^k / (k*t + 1), then
A(n, k) = [z^k] B(n, z).
EXAMPLE
Array A(n, k) begins:
[0] 1, 1, 0, 0, 0, 0, 0, 0, 0, ... A019590
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[2] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... A000108
[3] 1, 1, 3, 12, 55, 273, 1428, 7752, 43263, ... A001764
[4] 1, 1, 4, 22, 140, 969, 7084, 53820, 420732, ... A002293
[5] 1, 1, 5, 35, 285, 2530, 23751, 231880, 2330445, ... A002294
[6] 1, 1, 6, 51, 506, 5481, 62832, 749398, 9203634, ... A002295
[7] 1, 1, 7, 70, 819, 10472, 141778, 1997688, 28989675, ... A002296
[8] 1, 1, 8, 92, 1240, 18278, 285384, 4638348, 77652024, ... A007556
[9] 1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, ... A062994
MAPLE
A := (n, k) -> binomial(k*n + 1, k)/(k*n + 1):
for n from 0 to 9 do seq(A(n, k), k = 0..8) od;
MATHEMATICA
(* See the Knuth references. In the christmas lecture Knuth has fun calculating the Fuss-Catalan development of Pi and i. *)
B[t_, n_] := Sum[Binomial[t k+1, k] z^k / (t k+1), {k, 0, n-1}] + O[z]^n
Table[CoefficientList[B[n, 9], z], {n, 0, 9}] // TableForm
CROSSREFS
Variants: A062993, A070914.
Fuss-Catalan triangles: A123110 (order 0), A355173 (order 1), A355172 (order 2), A355174 (order 3).
Sequence in context: A290353 A263857 A334895 * A355576 A198062 A347617
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jun 26 2022
STATUS
approved