login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290353
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the k-th Euler transform of the sequence with g.f. 1+x.
22
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 6, 5, 1, 0, 1, 1, 5, 10, 14, 7, 1, 0, 1, 1, 6, 15, 30, 27, 11, 1, 0, 1, 1, 7, 21, 55, 75, 58, 15, 1, 0, 1, 1, 8, 28, 91, 170, 206, 111, 22, 1, 0, 1, 1, 9, 36, 140, 336, 571, 518, 223, 30, 1, 0
OFFSET
0,13
COMMENTS
A(n,k) is the number of unlabeled rooted trees with exactly n leaves, all in level k. A(3,3) = 6:
: o o o o o o
: | | | / \ / \ /|\
: o o o o o o o o o o
: | / \ /|\ | | ( ) | | | |
: o o o o o o o o o o o o o o
: /|\ ( ) | | | | ( ) | | | | | | |
: o o o o o o o o o o o o o o o o o o
LINKS
B. A. Huberman and T. Hogg, Complexity and adaptation, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.
FORMULA
G.f. of column k=0: 1+x, of column k>0: Product_{j>0} 1/(1-x^j)^A(j,k-1).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 1, 3, 6, 10, 15, 21, 28, 36, ...
0, 1, 5, 14, 30, 55, 91, 140, 204, ...
0, 1, 7, 27, 75, 170, 336, 602, 1002, ...
0, 1, 11, 58, 206, 571, 1337, 2772, 5244, ...
0, 1, 15, 111, 518, 1789, 5026, 12166, 26328, ...
0, 1, 22, 223, 1344, 5727, 19193, 54046, 133476, ...
MAPLE
with(numtheory):
A:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
add(A(d, k-1)*d, d=divisors(j))*A(n-j, k), j=1..n)/n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
A[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[A[d, k - 1]*d, {d, Divisors[j]}] A[n - j, k], {j, n}]/n]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}]//Flatten (* Indranil Ghosh, Jul 30 2017, after Maple code *)
CROSSREFS
Main diagonal gives A290354.
Cf. A144150.
Sequence in context: A309896 A083856 A081718 * A263857 A334895 A355262
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 28 2017
STATUS
approved