login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the k-th Euler transform of the sequence with g.f. 1+x.
22

%I #25 Oct 04 2018 20:12:33

%S 1,1,1,1,1,0,1,1,1,0,1,1,2,1,0,1,1,3,3,1,0,1,1,4,6,5,1,0,1,1,5,10,14,

%T 7,1,0,1,1,6,15,30,27,11,1,0,1,1,7,21,55,75,58,15,1,0,1,1,8,28,91,170,

%U 206,111,22,1,0,1,1,9,36,140,336,571,518,223,30,1,0

%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the k-th Euler transform of the sequence with g.f. 1+x.

%C A(n,k) is the number of unlabeled rooted trees with exactly n leaves, all in level k. A(3,3) = 6:

%C : o o o o o o

%C : | | | / \ / \ /|\

%C : o o o o o o o o o o

%C : | / \ /|\ | | ( ) | | | |

%C : o o o o o o o o o o o o o o

%C : /|\ ( ) | | | | ( ) | | | | | | |

%C : o o o o o o o o o o o o o o o o o o

%H Alois P. Heinz, <a href="/A290353/b290353.txt">Antidiagonals n = 0..140, flattened</a>

%H B. A. Huberman and T. Hogg, <a href="https://doi.org/10.1016/0167-2789(86)90308-1">Complexity and adaptation</a>, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F G.f. of column k=0: 1+x, of column k>0: Product_{j>0} 1/(1-x^j)^A(j,k-1).

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 0, 1, 2, 3, 4, 5, 6, 7, 8, ...

%e 0, 1, 3, 6, 10, 15, 21, 28, 36, ...

%e 0, 1, 5, 14, 30, 55, 91, 140, 204, ...

%e 0, 1, 7, 27, 75, 170, 336, 602, 1002, ...

%e 0, 1, 11, 58, 206, 571, 1337, 2772, 5244, ...

%e 0, 1, 15, 111, 518, 1789, 5026, 12166, 26328, ...

%e 0, 1, 22, 223, 1344, 5727, 19193, 54046, 133476, ...

%p with(numtheory):

%p A:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(

%p add(A(d, k-1)*d, d=divisors(j))*A(n-j, k), j=1..n)/n))

%p end:

%p seq(seq(A(n, d-n), n=0..d), d=0..14);

%t A[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[A[d, k - 1]*d, {d, Divisors[j]}] A[n - j, k], {j, n}]/n]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}]//Flatten (* _Indranil Ghosh_, Jul 30 2017, after Maple code *)

%Y Columns k=1-10 give: A000012, A000041, A001970, A007713, A007714, A290355, A290356, A290357, A290358, A290359.

%Y Rows 0+1,2-10 give: A000012, A001477, A000217, A000330, A007715, A290360, A290361, A290362, A290363, A290364.

%Y Main diagonal gives A290354.

%Y Cf. A144150.

%K nonn,tabl

%O 0,13

%A _Alois P. Heinz_, Jul 28 2017