login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334895
G.f.: (Sum_{k>=1} prime(k) * x^k) * (Product_{j>=1} (1 - x^j)).
1
0, 2, 1, 0, -1, -1, -3, -4, -4, -3, 3, -1, 5, 3, 2, 6, 8, 11, 3, 3, 1, -5, -5, -3, -4, -8, -12, -16, -19, -13, -5, 9, 3, 1, -7, 3, 7, 0, 20, 18, 18, 18, 23, 19, 15, 9, 5, 5, 15, -9, -25, -27, -25, -20, -6, -12, -20, -10, -20, -17, -27, -9, -1, 5, -5, -13, -23, 3, 1, 15, 19
OFFSET
0,2
COMMENTS
Convolution of primes with A010815.
FORMULA
Sum_{k=1..n} a(k) * A000041(n-k) = prime(n).
MATHEMATICA
nmax = 70; CoefficientList[Series[Sum[Prime[k] x^k, {k, 1, nmax}] Product[(1 - x^j), {j, 1, nmax}], {x, 0, nmax}], x]
A010815[0] = 1; A010815[n_] := A010815[n] = -(1/n) Sum[DivisorSigma[1, k] A010815[n - k], {k, 1, n}]; a[n_] := Sum[Prime[k] A010815[n - k], {k, 1, n}]; Table[a[n], {n, 0, 70}]
CROSSREFS
Cf. A000040, A000041, A010815, A086717, A246575 (convolution of nonnegative integers with A010815).
Sequence in context: A081718 A290353 A263857 * A355262 A355576 A198062
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 14 2020
STATUS
approved