OFFSET
1,1
COMMENTS
An XOR-triangle t(n) is an inverted 0-1 triangle formed by choosing a top row the binary rendition of n and having each entry in subsequent rows be the XOR of the two values above it, i.e., A038554(n) applied recursively until we reach a single bit.
Let T(n,k) address the terms in the k-th position of row n in A333624.
LINKS
EXAMPLE
a(1) = 648, since b(A334769(1)) = b(151) = 10010111, which generates T(151) as shown below, replacing 1 with "@" and 0 with ".":
@ . . @ . @ @ @
@ . @ @ @ . .
@ @ . . @ .
. @ . @ @
@ @ @ .
. . @
. @
@
In this figure we see 3 zero-triangles of side length k = 1, and 4 of side length k = 2, therefore, T(1,1) = 3 and T(1,2) = 4. This becomes 2^3 * 3^4 = 8 * 81 = 648.
--------------------------------------
1 151 648 3, 4
2 233 648 3, 4
3 543 686 1, 0, 0, 3
4 599 12096 6, 3, 0, 1
5 937 12096 6, 3, 0, 1
6 993 686 1, 0, 0, 3
7 1379 192000 9, 1, 3
8 1483 139968 6, 7
9 1589 192000 9, 1, 3
10 1693 139968 6, 7
11 2359 1866240 9, 6, 1
12 2391 179712 9, 3, 0, 0, 0, 1
13 3753 179712 9, 3, 0, 0, 0, 1
14 3785 1866240 9, 6, 1
15 8607 814968 3, 3, 0, 3, 1
16 9559 2101248 12, 3, 0, 0, 0, 0, 0, 1
...
MATHEMATICA
With[{s = Rest[Import["https://oeis.org/A334769/b334769.txt", "Data"][[All, -1]]]}, Map[With[{w = NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &]}, If[Length@ # == 0, 1, Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #] &@ ReplacePart[ConstantArray[0, Max@ #[[All, 1]]], Map[#1 -> #2 & @@ # &, #]]] &@ Tally@ Flatten@ Array[If[# == 1, Map[If[First@ # == 1, Nothing, Length@ #] &, Split@ w[[#]]], Map[If[First@ # == -1, Length@ #, Nothing] &, Split[w[[#]] - Most@ w[[# - 1]]]]] &, Length@ w]] /. -Infinity -> 0 &, s[[1 ;; 29]]]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, May 23 2020
STATUS
approved