OFFSET
0,3
LINKS
Ray Chandler, Table of n, a(n) for n = 0..1000
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (0, 18, 0, -153, 0, 816, 0, -3060, 0, 8568, 0, -18564, 0, 31824, 0, -43758, 0, 48620, 0, -43758, 0, 31824, 0, -18564, 0, 8568, 0, -3060, 0, 816, 0, -153, 0, 18, 0, -1).
MAPLE
f := proc(m) local k, t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1, n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n); fi; t1; end; where n=18.
MATHEMATICA
f[m_] := Module[{n = 18, t1}, t1 = 2^(n-1)*Binomial[(n+2m)/2 - 1, n-1]; If[EvenQ[m], t1 = t1 + Sum[2^k*Binomial[n, k]* Binomial[m-1, k-1], {k, 0, n}]]; t1];
Table[f[m], {m, 0, 24}] (* Jean-François Alcover, Mar 23 2023, after Maple code *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
Recomputed by N. J. A. Sloane, Nov 27 1998
STATUS
approved