OFFSET
1,5
COMMENTS
Row lengths are given by A061395(n), n >= 2: [1, 2, 1, 3, 2, 4, 1, 2, ... ].
This sequence contains every finite sequence of nonnegative integers. - Franklin T. Adams-Watters, Jun 22 2005
LINKS
Reinhard Zumkeller, Rows n = 1..250 of triangle, flattened
Jeppe Stig Nielsen, See this explanation.
EXAMPLE
1 = 2^0
2 = 2^1
3 = 2^0 3^1
4 = 2^2
5 = 2^0 3^0 5^1
6 = 2^1 3^1
... and reading the exponents gives the sequence.
Since for example 99=2^0*3^2*5^0*7^0*11^1, we use this symbol for ninety-nine: 99: {0,2,0,0,1}. Concatenating all the symbols for 1,2,3,4,5,6,..., we get the sequence.
MATHEMATICA
f[n_] := If[n == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ n]; Array[f, 29] // Flatten (* Michael De Vlieger, Mar 08 2019 *)
PROG
(Haskell)
a067255 n k = a067255_tabf !! (n-1) !! (k-1)
a067255_row 1 = [0]
a067255_row n = f n a000040_list where
f 1 _ = []
f u (p:ps) = g u 0 where
g v e = if m == 0 then g v' (e + 1) else e : f v ps
where (v', m) = divMod v p
a067255_tabf = map a067255_row [1..]
-- Reinhard Zumkeller, Jun 11 2013
CROSSREFS
KEYWORD
easy,nonn,tabf
AUTHOR
Jeppe Stig Nielsen, Feb 20 2002
STATUS
approved