login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375107
Expansion of Sum_{k in Z} x^(2*k) / (1 - x^(7*k+3)).
7
1, 0, 0, 1, 1, 0, 1, -1, 1, 1, 0, 0, 2, 0, 0, 1, 1, -1, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 1, -1, 1, 0, 1, 1, 0, 0, 2, -1, 1, 2, 0, 0, 0, 0, 1, 1, 0, -1, 2, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 2, 0, -1, 1, 1, 0, 0, -2, 1, 1, 1, 0, 3, -1, 0, 2, 1, -1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, -1, 2
OFFSET
0,13
LINKS
R. P. Agarwal, Lambert series and Ramanujan, Prod. Indian Acad. Sci. (Math. Sci.), v. 103, n. 3, 1993, pp. 269-293. see p. 286.
FORMULA
G.f.: Product_{k>0} (1-x^(7*k))^2 / ((1-x^(7*k-3)) * (1-x^(7*k-4))).
G.f.: Sum_{k in Z} x^(3*k) / (1 - x^(7*k+2)).
PROG
(PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=-N, N, x^(2*k)/(1-x^(7*k+3))))
(PARI) my(N=100, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^2/((1-x^(7*k-3))*(1-x^(7*k-4)))))
CROSSREFS
Sequence in context: A336562 A067255 A065716 * A079409 A369461 A114643
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 30 2024
STATUS
approved