login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369461
Number of representations of 12n-5 as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.
8
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 1, 1, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 3, 0, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 2, 0, 0, 2, 1, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 2, 1, 0, 1, 1, 0, 0, 0, 4, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0
OFFSET
1,13
COMMENTS
The sequence seems to contain an infinite number of zeros. See A369451 for the cumulative sum, and comments there.
Question: Are there any sections of this sequence, with parameters k >= 2, 0 <= i < k, for which a((k*n)-i) = 0 for all n >= 1? - Antti Karttunen, Nov 20 2024
LINKS
FORMULA
a(n) = A369054(A017605(n-1)) = A369054((12*n)-5).
a(n) = A369055((3*n)-1).
PROG
(PARI)
A369054(n) = if(3!=(n%4), 0, my(v = [3, 3], ip = #v, r, c=0); while(1, r = (n-(v[1]*v[2])) / (v[1]+v[2]); if(r < v[2], ip--, ip = #v; if(1==denominator(r) && isprime(r), c++)); if(!ip, return(c)); v[ip] = nextprime(1+v[ip]); for(i=1+ip, #v, v[i]=v[i-1])));
A369461(n) = A369054((12*n)-5);
CROSSREFS
Trisection of A369055.
Cf. A017605, A369054, A369451 (partial sums), A369460, A369462.
Sequence in context: A065716 A375107 A079409 * A114643 A369055 A038498
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 23 2024
STATUS
approved