login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143078
Triangle read by rows: row n (n >= 2) has length pi(n) (see A000720) and the k-th term gives the exponent of prime(k) in the prime factorization of n.
1
1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1
OFFSET
2,4
COMMENTS
If we suppress the 0's at the ends of the rows we get A067255. The number of 0's suppressed is A036234(n)-A061395(n)-1. - Jacques ALARDET, Jan 11 2012
Otherwise said, the number of suppressed (= trailing) 0's in row n is A000720(n)-A061395(n). - M. F. Hasler, Mar 10 2013
FORMULA
t(n,m,k)=If[PrimeQ[FactorInteger[n][[m]][[1]]] && FactorInteger[n][[m]][[ 1]] == Prime[k], FactorInteger[n][[m]][[2]], 0]; T(n,m)=vector_sum overk of t(n,m,k).
EXAMPLE
Triangle begins
{1},
{0, 1},
{2, 0},
{0, 0, 1},
{1, 1, 0}, (the 6th row, and 6 = prime(1)*prime(2))
{0, 0, 0, 1},
{3, 0, 0, 0},
{0, 2, 0, 0},
{1, 0, 1, 0},
...
MATHEMATICA
Clear[t, T, n, m, k]; t[n_, m_, k_] := If[PrimeQ[FactorInteger[ n][[m]][[1]]] && FactorInteger[n][[m]][[1]] == Prime[k], FactorInteger[n][[m]][[2]], 0]; T = Table[Apply[Plus, Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], { m, 1, Length[FactorInteger[n]]}]], {n, 1, 10}]; Flatten[%]
PROG
(PARI) my(r(n)=vector(primepi(n), i, valuation(n, prime(i)))); concat(vector(20, n, r(n))) \\ [M. F. Hasler, Mar 10 2013]
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jan 12 2012
More terms from M. F. Hasler, Mar 10 2013
STATUS
approved