login
A143078
Triangle read by rows: row n (n >= 2) has length pi(n) (see A000720) and the k-th term gives the exponent of prime(k) in the prime factorization of n.
1
1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1
OFFSET
2,4
COMMENTS
If we suppress the 0's at the ends of the rows we get A067255. The number of 0's suppressed is A036234(n)-A061395(n)-1. - Jacques ALARDET, Jan 11 2012
Otherwise said, the number of suppressed (= trailing) 0's in row n is A000720(n)-A061395(n). - M. F. Hasler, Mar 10 2013
FORMULA
t(n,m,k)=If[PrimeQ[FactorInteger[n][[m]][[1]]] && FactorInteger[n][[m]][[ 1]] == Prime[k], FactorInteger[n][[m]][[2]], 0]; T(n,m)=vector_sum overk of t(n,m,k).
EXAMPLE
Triangle begins
{1},
{0, 1},
{2, 0},
{0, 0, 1},
{1, 1, 0}, (the 6th row, and 6 = prime(1)*prime(2))
{0, 0, 0, 1},
{3, 0, 0, 0},
{0, 2, 0, 0},
{1, 0, 1, 0},
...
MATHEMATICA
Clear[t, T, n, m, k]; t[n_, m_, k_] := If[PrimeQ[FactorInteger[ n][[m]][[1]]] && FactorInteger[n][[m]][[1]] == Prime[k], FactorInteger[n][[m]][[2]], 0]; T = Table[Apply[Plus, Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], { m, 1, Length[FactorInteger[n]]}]], {n, 1, 10}]; Flatten[%]
PROG
(PARI) my(r(n)=vector(primepi(n), i, valuation(n, prime(i)))); concat(vector(20, n, r(n))) \\ [M. F. Hasler, Mar 10 2013]
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jan 12 2012
More terms from M. F. Hasler, Mar 10 2013
STATUS
approved