OFFSET
2,4
COMMENTS
If we suppress the 0's at the ends of the rows we get A067255. The number of 0's suppressed is A036234(n)-A061395(n)-1. - Jacques ALARDET, Jan 11 2012
Otherwise said, the number of suppressed (= trailing) 0's in row n is A000720(n)-A061395(n). - M. F. Hasler, Mar 10 2013
FORMULA
t(n,m,k)=If[PrimeQ[FactorInteger[n][[m]][[1]]] && FactorInteger[n][[m]][[ 1]] == Prime[k], FactorInteger[n][[m]][[2]], 0]; T(n,m)=vector_sum overk of t(n,m,k).
EXAMPLE
Triangle begins
{1},
{0, 1},
{2, 0},
{0, 0, 1},
{1, 1, 0}, (the 6th row, and 6 = prime(1)*prime(2))
{0, 0, 0, 1},
{3, 0, 0, 0},
{0, 2, 0, 0},
{1, 0, 1, 0},
...
MATHEMATICA
Clear[t, T, n, m, k]; t[n_, m_, k_] := If[PrimeQ[FactorInteger[ n][[m]][[1]]] && FactorInteger[n][[m]][[1]] == Prime[k], FactorInteger[n][[m]][[2]], 0]; T = Table[Apply[Plus, Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], { m, 1, Length[FactorInteger[n]]}]], {n, 1, 10}]; Flatten[%]
PROG
(PARI) my(r(n)=vector(primepi(n), i, valuation(n, prime(i)))); concat(vector(20, n, r(n))) \\ [M. F. Hasler, Mar 10 2013]
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 14 2008
EXTENSIONS
Edited by N. J. A. Sloane, Jan 12 2012
More terms from M. F. Hasler, Mar 10 2013
STATUS
approved