login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082786
Triangle, read by rows, of exponents of primes in canonical prime factorization of n: T(n,k) = greatest number such that prime(k)^T(n,k) divides n, 1 <= k <= n.
3
0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,7
COMMENTS
n = Product_{k=1..n} prime(k)^T(n,k);
T(n, A055396(n)) > 0 and T(n,k) = 0 for 1 <= k < A055396(n);
T(n, A061395(n)) > 0 and T(n,k) = 0 for A061395(n) < k <= n;
Sum_{k=1..n} T(n,k) = A001222(n);
Sum_{k=1..n} A057427(T(n,k)) = A001221(n);
Sum_{k=1..n} T(n,k)*prime(k) = A001414(n);
Sum_{k=1..n} A057427(T(n,k))*prime(k) = A008472(n);
Min(T(n,k): 1<=k<=n) = A051904(n);
Max(T(n,k): 1<=k<=n) = A051903(n);
T(n,1) = A007814(n); T(n,2) = A007949(n), n>1.
LINKS
Eric Weisstein's World of Mathematics, Prime Factorization
EXAMPLE
Triangle begins:
0,
1, 0,
0, 1, 0,
2, 0, 0, 0,
0, 0, 1, 0, 0,
1, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0,
3, 0, 0, 0, 0, 0, 0, 0,
...
MATHEMATICA
Table[IntegerExponent[n, Prime[k]], {n, 1, 15}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 14 2018 *)
PROG
(PARI) row(n) = vector(n, k, valuation(n, prime(k)));
tabl(nn) = for (n=1, nn, print(row(n))); \\ Michel Marcus, Dec 14 2018
CROSSREFS
Cf. A067255 (same as irregular triangle).
Sequence in context: A094428 A277148 A194024 * A101638 A321379 A070141
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, May 22 2003
STATUS
approved