OFFSET
1,1
COMMENTS
a(13) > 2*10^11. 518914376931, 7292811659931, 19090909090909090911 and prime repunits (A004022) are also terms. - Donovan Johnson, Dec 04 2012
Are there any terms not ending in 1? Equivalently, are any terms also in A070003? - Charles R Greathouse IV, Dec 05 2012
a(15) > 10^13. If exponents equal to 1 are not represented (as in A080670), the corresponding sequence starts with 113113, 31373137, and 533517177839 = 853 * 3517 * 177839. - Giovanni Resta, Jun 26 2017
EXAMPLE
The prime factorization of 190911 is 3^1 * 7^1 * 9091^1 with decimal encoding 317190911, which ends in 190911. Hence 190911 is a term of the sequence.
MATHEMATICA
(*returns true if a ends with b, false o.w.*) f[a_, b_] := Module[{c, d, e, g, h, i, r}, r = False; c = ToString[a]; d = ToString[b]; e = StringLength[c]; g = StringPosition[c, d]; h = Length[g]; If[h > 0, i = g[[h]]; If[i[[2]] == e, r = True]]; r]; (*gives the decimal encoding of the prime factorization of n*) g[n_] := FromDigits[Flatten[IntegerDigits[FactorInteger[n]]]]; Do[If[f[g[n], n], Print[n]], {n, 1, 10^6} ]
PROG
(PARI) {a067254(a, b) = local(n, v, k, j); for(n=max(2, a), b, v=factor(n); if(eval(concat(vector(matsize(v)[1], k, concat(vector(matsize(v)[2], j, Str(v[k, j]))))))%(10^length(Str(n)))==n, print1(n, ", ")))}
a067254(2, 2*10^7) \\ Klaus Brockhaus, Feb 22 2002
CROSSREFS
KEYWORD
base,nonn,more
AUTHOR
Joseph L. Pe, Feb 20 2002
EXTENSIONS
a(5)-a(7) from Klaus Brockhaus, Feb 22 2002
a(8)-a(10) from Donovan Johnson, Mar 26 2010
a(11)-a(12) from Donovan Johnson, Dec 04 2012
a(13) from Giovanni Resta, Jun 09 2017
a(14) from Giovanni Resta, Jun 26 2017
STATUS
approved