login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309896
Generalized Fibonacci numbers. Square array read by ascending antidiagonals. F(n,k) for n >= 0 and k >= 0.
3
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 4, 5, 1, 0, 1, 1, 5, 5, 9, 8, 1, 0, 1, 1, 6, 6, 14, 14, 13, 1, 0, 1, 1, 7, 7, 20, 20, 28, 21, 1, 0, 1, 1, 8, 8, 27, 27, 48, 47, 34, 1, 0, 1, 1, 9, 9, 35, 35, 75, 75, 89, 55, 1, 0
OFFSET
0,13
FORMULA
F(n, k) = Sum_{j=0..(n-1)/2} (-1)^j*binomial(n-1-j,j)*F(n, k-1-2*j) + Sum_{j=0..(n-2)/2} (-1)^j*binomial(n-1-j, j+1)*F(n, k-2-2*j) for k > 0; F(n, 0) = 1 and F(n, k) = 0 if k < 0.
EXAMPLE
Array starts:
[0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[2] 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
[3] 1, 1, 3, 4, 9, 14, 28, 47, 89, 155, 286, 507, ...
[4] 1, 1, 4, 5, 14, 20, 48, 75, 165, 274, 571, 988, ...
[5] 1, 1, 5, 6, 20, 27, 75, 110, 275, 429, 1001, 1637, ...
[6] 1, 1, 6, 7, 27, 35, 110, 154, 429, 637, 1638, 2548, ...
[7] 1, 1, 7, 8, 35, 44, 154, 208, 637, 910, 2548, 3808, ...
[8] 1, 1, 8, 9, 44, 54, 208, 273, 910, 1260, 3808, 5508, ...
[9] 1, 1, 9, 10, 54, 65, 273, 350, 1260, 1700, 5508, 7752, ...
PROG
(SageMath)
@cached_function
def F(n, k):
if k < 0: return 0
if k == 0: return 1
a = sum((-1)^j*binomial(n-1-j, j )*F(n, k-1-2*j) for j in (0..(n-1)/2))
b = sum((-1)^j*binomial(n-1-j, j+1)*F(n, k-2-2*j) for j in (0..(n-2)/2))
return a + b
print([F(n-k, k) for n in (0..11) for k in (0..n)])
CROSSREFS
Cf. A000007 (n=0), A000012 (n=1), A000045 (n=2), A006053 (n=3), A188021 (n=4), A231181 (n=5).
Sequence in context: A374176 A263191 A192517 * A083856 A081718 A290353
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 21 2019
STATUS
approved