login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309893
Decimal expansion of AGM(1, sqrt(3)/2).
2
9, 3, 1, 8, 0, 8, 3, 9, 1, 6, 2, 2, 4, 4, 8, 2, 7, 1, 1, 7, 7, 8, 4, 4, 5, 1, 5, 5, 1, 2, 1, 3, 5, 2, 9, 7, 5, 7, 8, 7, 6, 6, 4, 2, 8, 4, 1, 3, 4, 2, 6, 8, 6, 1, 1, 1, 0, 2, 2, 0, 6, 1, 3, 4, 8, 9, 1, 6, 2, 8, 9, 7, 2, 8
OFFSET
0,1
COMMENTS
Related to the pendulum acceleration relation at 60 degrees. In general, the period T of a mathematical pendulum with a maximum deflection angle theta is 2*Pi*sqrt(L/g)/AGM(1, cos(theta/2)), where L is the length of the pendulum, g is the gravitational acceleration, and 0 < theta <= 90 degrees. For theta = 60 degrees, the period is T = 2*Pi*sqrt(L/g)/AGM(1, sqrt(3)/2). - Jianing Song, Nov 21 2022
FORMULA
AGM(1, sin(Pi/3)).
EXAMPLE
0.931808391622448271177844...
MATHEMATICA
RealDigits[ArithmeticGeometricMean[1, Sqrt[3]/2], 10, 100][[1]] (* Amiram Eldar, Aug 21 2019 *)
PROG
(Python)
import decimal
prec = int(input('Precision: '))
decimal.getcontext().prec = prec
D = decimal.Decimal
def agm(a, b):
for x in range(prec):
a, b = (a + b) / 2, (a * b).sqrt()
return a
print(agm(1, D(3).sqrt()/2))
(PARI) agm(1, sqrt(3)/2) \\ Michel Marcus, Aug 22 2019
(Sage)
RealField(300)(1.0).agm(sqrt(3)/2) # Peter Luschny, Aug 22 2019
CROSSREFS
Cf. A310000 (AGM(1, cos(Pi/5))), A096427 (AGM(1, sqrt(2)/2)), A053004, A014549, A068521.
Sequence in context: A081813 A197003 A048799 * A188887 A378102 A250091
KEYWORD
nonn,cons
AUTHOR
Daniel Hoyt, Aug 21 2019
STATUS
approved