OFFSET
0,1
COMMENTS
Related to the pendulum acceleration relation at 60 degrees. In general, the period T of a mathematical pendulum with a maximum deflection angle theta is 2*Pi*sqrt(L/g)/AGM(1, cos(theta/2)), where L is the length of the pendulum, g is the gravitational acceleration, and 0 < theta <= 90 degrees. For theta = 60 degrees, the period is T = 2*Pi*sqrt(L/g)/AGM(1, sqrt(3)/2). - Jianing Song, Nov 21 2022
LINKS
FORMULA
AGM(1, sin(Pi/3)).
EXAMPLE
0.931808391622448271177844...
MATHEMATICA
RealDigits[ArithmeticGeometricMean[1, Sqrt[3]/2], 10, 100][[1]] (* Amiram Eldar, Aug 21 2019 *)
PROG
(Python)
import decimal
prec = int(input('Precision: '))
decimal.getcontext().prec = prec
D = decimal.Decimal
def agm(a, b):
for x in range(prec):
a, b = (a + b) / 2, (a * b).sqrt()
return a
print(agm(1, D(3).sqrt()/2))
(PARI) agm(1, sqrt(3)/2) \\ Michel Marcus, Aug 22 2019
(Sage)
RealField(300)(1.0).agm(sqrt(3)/2) # Peter Luschny, Aug 22 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Daniel Hoyt, Aug 21 2019
STATUS
approved