login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309892
a(0) = 0, a(1) = 1, and for any n > 1, a(n) is the number of iterations of the map x -> x - gpf(x) (where gpf(x) denotes the greatest prime factor of x) required to reach 0 starting from n.
7
0, 1, 1, 1, 2, 1, 2, 1, 3, 3, 2, 1, 4, 1, 2, 3, 3, 1, 4, 1, 4, 3, 2, 1, 4, 5, 2, 5, 4, 1, 6, 1, 7, 3, 2, 5, 4, 1, 2, 3, 6, 1, 6, 1, 4, 7, 2, 1, 8, 7, 8, 3, 4, 1, 4, 5, 8, 3, 2, 1, 6, 1, 2, 9, 3, 5, 6, 1, 4, 3, 10, 1, 4, 1, 2, 11, 4, 7, 6, 1, 12, 7, 2, 1, 8, 5
OFFSET
0,5
COMMENTS
This sequence is similar to A175126: here we subtract the greatest prime factor, there the least prime factor.
FORMULA
a(n) <= n / A006530(n) for any n > 0.
a(n) = n if n <= 1, for n >= 2, a(n) = 1+a(A076563(n)). - Antti Karttunen, Aug 22 2019
EXAMPLE
For n = 16:
- the greatest prime factor of 16 is 2,
- the greatest prime factor of 16-2 = 14 is 7,
- the greatest prime factor of 14-7 = 7 is 7,
- 7 - 7 = 0,
- hence a(16) = 3.
PROG
(PARI) a(n) = for (k=0, oo, if (n==0, return (k), n==1, n--, my (f=factor(n)); n-=f[#f~, 1]))
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Aug 21 2019
STATUS
approved