

A048799


Decimal expansion of first Smarandache constant.


3



1, 0, 9, 3, 1, 7, 0, 4, 5, 9, 1, 9, 5, 4, 9, 0, 8, 9, 3, 9, 6, 8, 2, 0, 1, 3, 7, 0, 1, 4, 5, 2, 0, 8, 3, 2, 5, 6, 8, 9, 5, 9, 2, 1, 6, 7, 8, 9, 1, 1, 5, 4, 5, 1, 9, 0, 6, 9, 1, 9, 6, 7, 2, 1, 5, 1, 8, 1, 8, 7, 0, 3, 3, 4, 9, 9, 8, 3, 3, 5, 9, 6, 0, 4, 7, 6, 7, 5, 2, 0, 9, 4, 4, 4, 5, 2, 4, 0, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Computed using suggestions from David W. Wilson posted to Sequence Fans mailing list (seqfan(AT)ext.jussieu.fr), May 30 2002
By the time n = 100 in the Mathematica coding below, each term < 10^143.
I conjecture that the Smarandache constants defined in the present sequence, A048834, A071120, A048835, A048836, A048837, A048838 are irrational.  Sukanto Bhattacharya (susant5au(AT)yahoo.com.au), Apr 28 2008


REFERENCES

I. Cojocaru, S. Cojocaru, First Constant of Smarandache, Smarandache Notions Journal, Vol. 7, No. 123, 1996, 116118.


LINKS

Table of n, a(n) for n=1..99.
Eric Weisstein's World of Mathematics, Smarandache Constants


FORMULA

Sum (1/S(n)!), where S(n) is the Kempner function A002034 and n >= 2.
Sum (A038024(n)/n!), where A038024(n) = #{k: S(k) = n} and n >= 2.  Jonathan Sondow, Aug 21 2006


EXAMPLE

1.09317...


MATHEMATICA

f[n_] := DivisorSigma[0, n! ]; s = 1; Do[s = N[s + (f[n + 1]  f[n])/(n + 1)!, 100], {n, 1, 10^4}]; RealDigits[s][[1]]


CROSSREFS

Cf. A071120, A002034, A048834, A038024, A048834, A071120, A048835, A048836, A048837, A048838.
Sequence in context: A085579 A081813 A197003 * A188887 A199152 A086232
Adjacent sequences: A048796 A048797 A048798 * A048800 A048801 A048802


KEYWORD

nonn,cons


AUTHOR

Charles T. Le (charlestle(AT)yahoo.com)


EXTENSIONS

Edited by Robert G. Wilson v and Don Reble (djr(AT)nk.ca), May 30 2002


STATUS

approved



