login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A048798
Smallest k > 0 such that n*k is a perfect cube.
10
1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 4, 289, 12, 361, 50, 441, 484, 529, 9, 5, 676, 1, 98, 841, 900, 961, 2, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, 1849, 242, 75, 2116, 2209, 36, 7, 20, 2601, 338, 2809, 4, 3025, 49, 3249
OFFSET
1,2
COMMENTS
Note that in general the smallest number k(>0) such that n*k is a perfect m-th power (rather obviously) = (the smallest m-th power divisible by n)/n and also (slightly less obviously) =n^(m-1)/(the number of solutions of x^m==0 mod n)^m. - Henry Bottomley, Mar 03 2000
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Peter Kagey)
Krassimir T. Atanassov, On the 22nd, the 23rd and 24th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5, No. 2 (1998), pp. 80-82.
Krassimir T. Atanassov, On Some of Smarandache's Problems, American Research Press, 1999, 16-21.
Marcela Popescu and Mariana Nicolescu, About the Smarandache Complementary Cubic Function, Smarandache Notions Journal, Vol. 7, No. 1-2-3, 1996, pp. 54-62.
Florentin Smarandache, Only Problems, Not Solutions! (see Unsolved Problem: 28, p. 26).
FORMULA
a(n) = A053149(n)/n = n^2/A000189(n)^3.
Multiplicative with a(p^e) = p^((-e) mod 3). - Mitch Harris, May 17 2005
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(9)/(3*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = 0.2079875504... . - Amiram Eldar, Oct 28 2022
EXAMPLE
a(12) = a(2*2*3) = 2*3*3 = 18 since 12*18 = 6^3.
a(28) = a(2*2*7) = 2*7*7 = 98 since 28*98 = 14^3.
MATHEMATICA
a[n_] := For[k = 1, True, k++, If[ Divisible[c = k^3, n], Return[c/n]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *)
f[p_, e_] := p^(Mod[-e, 3]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
With[{cbs=Range[3300]^3}, Table[SelectFirst[cbs, Mod[#, n]==0&]/n, {n, 60}]] (* Harvey P. Dale, May 10 2024 *)
PROG
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], f[i, 1]^(-f[i, 2]%3)) \\ Charles R Greathouse IV, Feb 27 2013
(PARI) a(n)=for(k=1, n^2, if(ispower(k*n, 3), return(k)))
vector(100, n, a(n)) \\ Derek Orr, Feb 07 2015
(Python)
from math import prod
from sympy import factorint
def A048798(n): return prod(p**(-e%3) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 05 2024
CROSSREFS
Cf. A254767 (analogous sequence with the restriction that k > n).
Sequence in context: A360541 A365298 A367932 * A007914 A048758 A277802
KEYWORD
nonn,easy,mult
AUTHOR
Charles T. Le (charlestle(AT)yahoo.com)
EXTENSIONS
More terms from Patrick De Geest, Feb 15 2000
STATUS
approved