|
|
A007913
|
|
Squarefree part of n: a(n) is the smallest positive number m such that n/m is a square.
|
|
284
|
|
|
1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 2, 33, 34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 2, 73, 74, 3, 19, 77
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also called core(n). [Not to be confused with the squarefree kernel of n, A007947.]
This is an arithmetic function and is undefined if n <= 0.
A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), lcm(A007947(b),c) = A007947(n) = "squarefree kernel" of n and bc = A019554(n) = "outer square root" of n. [Corrected by M. F. Hasler, Mar 01 2018]
If n > 1, the quantity f(n) = log(n/core(n))/log(n) satisfies 0 <= f(n) <= 1; f(n) = 0 when n is squarefree and f(n) = 1 when n is a perfect square. One can define n as being "epsilon-almost squarefree" if f(n) < epsilon. - Kurt Foster (drsardonicus(AT)earthlink.net), Jun 28 2008
a(n) is the smallest natural number m such that product of geometric mean of the divisors of n and geometric mean of the divisors of m are integers. Geometric mean of the divisors of number n is real number b(n) = Sqrt(n). a(n) = 1 for infinitely many n. a(n) = 1 for numbers from A000290: a(A000290(n)) = 1. For n = 8; b(8) = sqrt(8), a(n) = 2 because b(2) = sqrt(2); sqrt(8) * sqrt(2) = 4 (integer). - Jaroslav Krizek, Apr 26 2010
Booker, Hiary, & Keating outline a method for bounding (on the GRH) a(n) for large n using L-functions. - Charles R Greathouse IV, Feb 01 2013
According to the formula a(n) = n/A000188(n)^2, the scatterplot exhibits the straight lines y=x, y=x/4, y=x/9, ..., i.e., y=x/k^2 for all k=1,2,3,... - M. F. Hasler, May 08 2014
a(n) = 1 if n is a square, a(n) = n if n is a product of distinct primes. - Zak Seidov, Jan 30 2016
All solutions of the Diophantine equation n*x=y^2 or, equivalently, G(n,x)=y, with G being the geometric mean, are of the form x=k^2*a(n), y=k*sqrt(n*a(n)), where k is a positive integer. - Stanislav Sykora, Feb 03 2016
|
|
LINKS
|
|
|
FORMULA
|
Dirichlet g.f.: zeta(2s)*zeta(s-1)/zeta(2s-2). - R. J. Mathar, Feb 11 2011
a(n) = n/( Sum_{k=1..n} floor(k^2/n)-floor((k^2 -1)/n) )^2. - Anthony Browne, Jun 06 2016
a(n) = rad(n)/a(n/rad(n)), where rad = A007947. This recurrence relation together with a(1) = 1 generate the sequence. - Velin Yanev, Sep 19 2017
(End)
Theorems proven by Copil and Panaitopol (2007):
Lim sup_{n->oo} a(n+1)-a(n) = oo.
Lim inf_{n->oo} a(n+1)-a(n) = -oo.
Sum_{k=1..n} 1/a(k) ~ c*sqrt(n) + O(log(n)), where c = zeta(3/2)/zeta(3) (A090699). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/30 = 0.328986... . - Amiram Eldar, Oct 25 2022
|
|
MAPLE
|
A007913 := proc(n) local f, a, d; f := ifactors(n)[2] ; a := 1 ; for d in f do if type(op(2, d), 'odd') then a := a*op(1, d) ; end if; end do: a; end proc: # R. J. Mathar, Mar 18 2011
# second Maple program:
a:= n-> mul(i[1]^irem(i[2], 2), i=ifactors(n)[2]):
seq(n / expand(numtheory:-nthpow(n, 2)), n=1..77); # Peter Luschny, Jul 12 2022
|
|
MATHEMATICA
|
data = Table[Sqrt[n], {n, 1, 100}]; sp = data /. Sqrt[_] -> 1; sfp = data/sp /. Sqrt[x_] -> x (* Artur Jasinski, Nov 03 2008 *)
Table[Times@@Power@@@({#[[1]], Mod[ #[[2]], 2]}&/@FactorInteger[n]), {n, 100}] (* Zak Seidov, Apr 08 2009 *)
Table[{p, e} = Transpose[FactorInteger[n]]; Times @@ (p^Mod[e, 2]), {n, 100}] (* T. D. Noe, May 20 2013 *)
Sqrt[#] /. (c_:1)*a_^(b_:0) -> (c*a^b)^2& /@ Range@100 (* Bill Gosper, Jul 18 2015 *)
|
|
PROG
|
(PARI) a(n)=core(n)
(Haskell)
a007913 n = product $
zipWith (^) (a027748_row n) (map (`mod` 2) $ a124010_row n)
(Python)
from sympy import factorint, prod
return prod(p for p, e in factorint(n).items() if e % 2)
(Sage)
[squarefree_part(n) for n in (1..77)] # Peter Luschny, Feb 04 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,mult,nice
|
|
AUTHOR
|
R. Muller, Mar 15 1996
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|