login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007911
a(n) = (n-1)!! - (n-2)!!.
5
1, 1, 5, 7, 33, 57, 279, 561, 2895, 6555, 35685, 89055, 509985, 1381905, 8294895, 24137505, 151335135, 468934515, 3061162125, 10033419375, 68000295825, 234484536825, 1645756410375, 5943863027025, 43105900812975, 162446292283275, 1214871076343925, 4761954230608575
OFFSET
3,3
COMMENTS
For n >= 0 let A(n) be the product of the positive integers <= n that have the same parity as n minus the product of the positive integers <= n that have the opposite parity as n. Then a(n) = A(n-1) (for n >= 3). [Peter Luschny, Jul 06 2011]
REFERENCES
S. P. Hurd and J. S. McCranie, Quantum factorials. Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994). Congr. Numer. 104 (1994), 19-24.
FORMULA
(n-1)*a(n+2) = a(n+1) + n^2*a(n). - Robert Israel, Aug 08 2017
MAPLE
DDF := proc(n) local R, P, k; R := {$1..n}; P := select(k->k mod 2 = n mod 2, R); mul(k, k = P) - mul(k, k = R minus P) end: A007911 := n -> DDF(n-1); # Peter Luschny, Jul 06 2011
f:= gfun:-rectoproc({(-n+1)*a(2+n)+a(1+n)+n^2*a(n), a(2)=0, a(3)=1}, a(n), remember):
map(f, [$3..100]); # Robert Israel, Aug 08 2017
MATHEMATICA
Table[(n - 1)!! - (n - 2)!!, {n, 3, 30}] (* Vincenzo Librandi, Aug 08 2017 *)
PROG
(Magma) DoubleFactorial:=func< n | &*[n..2 by -2] >; [DoubleFactorial((n-1))-DoubleFactorial(n-2): n in [3..30]]; // Vincenzo Librandi, Aug 08 2017
CROSSREFS
Cf. A007912.
Sequence in context: A335121 A230997 A243019 * A066172 A175667 A341063
KEYWORD
nonn,easy
AUTHOR
STATUS
approved