login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007909 Expansion of (1-x)/(1-2*x+x^2-2*x^3). 10
1, 1, 1, 3, 7, 13, 25, 51, 103, 205, 409, 819, 1639, 3277, 6553, 13107, 26215, 52429, 104857, 209715, 419431, 838861, 1677721, 3355443, 6710887, 13421773, 26843545, 53687091, 107374183, 214748365, 429496729, 858993459, 1717986919, 3435973837, 6871947673 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Equals INVERT transform of (1, 0, 2, 2, 2,...). [Gary W. Adamson, Apr 28 2009]

REFERENCES

M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 38.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Charles K. Cook and Michael R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Annales Mathematicae et Informaticae, 41 (2013) pp. 27-39.

Shanzhen Gao, Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.

I. Gessel, Problem 10424, Amer. Math. Monthly, 102 (1995), 70.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 444

Index entries for linear recurrences with constant coefficients, signature (2,-1,2).

FORMULA

G.f.: (1-x)/(1-2*x+x^2-2*x^3).

a(n) = (1/5)*(2^(n+1)+3*cos(n*Pi/2)+sin(n*Pi/2)).

a(n) = sum{k=0..floor((n-1)/3), binomial(n-k-1, 2*k)*2^k}. - Paul Barry, Sep 16 2004

a(n) = (1/5) * (2^n + (-1)^[n/2] + 2(-1)^[(n-1)/2]). - Ralf Stephan, Jun 09 2005

a(n) = 2*a(n-1)-a(n-2)+2*a(n-3). Sequence is identical to its half second differences from the second term; a(n)+a(n+2)=2^(n+1). - Paul Curtz, Dec 17 2007

a(n) = (2^n)*sum(((-1)^(floor(k/2)))/(2^k),k=1..n). - Yalcin Aktar, Jul 20 2008

MAPLE

U:=n->(1/5)*(2^(n+1)+3*cos(n*Pi/2)+sin(n*Pi/2)); [seq(U(n), n=0..50)];

MATHEMATICA

CoefficientList[Series[(1-x)/(1-2*x+x^2-2*x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 17 2012 *)

LinearRecurrence[{2, -1, 2}, {1, 1, 1}, 40] (* Harvey P. Dale, Jul 26 2016 *)

PROG

(MAGMA) I:=[1, 1, 1]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 17 2012

CROSSREFS

Cf. A005251, A007679, A007910.

Sequence in context: A169914 A078000 A190569 * A282913 A284026 A099810

Adjacent sequences:  A007906 A007907 A007908 * A007910 A007911 A007912

KEYWORD

nonn,easy

AUTHOR

Mogens Esrom Larsen (mel(AT)math.ku.dk)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 21:38 EDT 2017. Contains 287241 sequences.