login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055231
Powerfree part of n: product of primes that divide n only once.
57
1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 3, 1, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 1, 37, 38, 39, 5, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 1, 73, 74, 3, 19, 77, 78, 79, 5
OFFSET
1,2
COMMENTS
The previous name was: Write n = K^2*F where F is squarefree and F = g*f where g = gcd(K,F) and f = F/g; then a(n) = f(n) = F(n)/g(n). Thus gcd(K^2,f) = 1.
Differs from A007913; they coincide if and only if g(n) = 1.
a(n) is the powerfree part of n; i.e., if n=Product(pi^ei) over all i (prime factorization) then a(n)=Product(pi^ei) over those i with ei=1; if n=b*c^2*d^3 then a(n) is minimum possible value of b. - Henry Bottomley, Sep 01 2000
Also denominator of n/rad(n)^2, where rad is the squarefree kernel of n (A007947), numerator: A062378. - Reinhard Zumkeller, Dec 10 2002
Largest unitary squarefree number dividing n (the unitary squarefree kernel of n). - Steven Finch, Mar 01 2004
From Bernard Schott, Dec 19 2022: (Start)
a(n) = 1 iff n is a squareful number (A001694).
1 < a(n) < n iff n is a nonsquarefree number that is not squareful (A332785).
a(n) = n iff n is a squarefree number (A005117). (End)
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
FORMULA
a(n) = A007913(n)/gcd(A008833(n), A007913(n)).
a(n) = n/A057521(n).
Multiplicative with a(p) = p and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Nov 01 2001
Dirichlet g.f.: zeta(s)*Product_{primes p} (1 + p^(1-s) - p^(-s) - p^(1-2s) + p^(-2s)). - R. J. Mathar, Dec 21 2011
a(n) = A007947(n)/A071773(n). - observed by Velin Yanev, Aug 27 2017, confirmed by Antti Karttunen, Nov 28 2017
a(1) = 1; for n > 1, a(n) = A020639(n)^A063524(A067029(n)) * a(A028234(n)). - Antti Karttunen, Nov 28 2017
a(n*m) = a(n)*a(m)/(gcd(n,a(m))*gcd(m,a(n))) for all n and m > 0 (conjectured). - Velin Yanev, Feb 06 2019. [This follows easily from the comment of Vladeta Jovovic. - N. J. A. Sloane, Mar 14 2019]
From Vaclav Kotesovec, Dec 19 2019: (Start)
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 - p^(1-3*s) + p^(2-3*s) - p^(2-2*s) + p^(-2*s) - p^(-s)).
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = Product_{primes p} (1 - 2/p^2 + 2/p^4 - 1/p^5) = 0.394913518073109872954607634745304266741971541072... (End)
a(n) = A197863(n)/n. - Amiram Eldar, Sep 01 2023
MAPLE
A055231 := proc(n)
a := 1 ;
if n > 1 then
for f in ifactors(n)[2] do
if op(2, f) = 1 then
a := a*op(1, f) ;
end if;
end do:
end if;
a ;
end proc: # R. J. Mathar, Dec 23 2011
MATHEMATICA
rad[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := Denominator[n/rad[n]^2]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 20 2013, after Reinhard Zumkeller *)
f[p_, e_] := If[e==1, p, 1]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
PROG
(PARI) A055231(n)={
local(a=1);
f=factor(n) ;
for(i=1, matsize(f)[1],
if( f[i, 2] ==1, a *= f[i, 1]
)
) ;
a ;
} /* R. J. Mathar, Mar 12 2012 */
(PARI) a(n) = {my(f=factor(n)); for (k=1, #f~, if (f[k, 2] > 1, f[k, 2] = 0); ); factorback(f); } \\ Michel Marcus, Aug 27 2017
(Scheme, with memoization-macro definec) (definec (A055231 n) (if (= 1 n) 1 (* (if (= 1 (A067029 n)) (A020639 n) 1) (A055231 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
(Python)
from math import prod
from sympy import factorint
def A055231(n): return prod(p for p, e in factorint(n).items() if e == 1) # Chai Wah Wu, Nov 14 2022
CROSSREFS
Positions of 1's: A001694.
Cf. A008833, A007913, A007947, A000188, A057521, A055773 (computed for n!), A056169 (number of prime divisors), A056671 (number of divisors), A092261 (sum of divisors of the n-th term), A197863, A332785.
Cf. A005117 (subsequence).
Sequence in context: A182938 A329445 A362248 * A304328 A304339 A160400
KEYWORD
nonn,easy,mult
AUTHOR
Labos Elemer, Jun 21 2000
EXTENSIONS
Name replaced with a simpler description (based on Henry Bottomley's comment) by Antti Karttunen, Nov 28 2017
Incorrect comments and example deleted by Peter Munn, Nov 30 2022
STATUS
approved