login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092261
Sum of unitary, squarefree divisors of n, including 1.
16
1, 3, 4, 1, 6, 12, 8, 1, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 4, 1, 42, 1, 8, 30, 72, 32, 1, 48, 54, 48, 1, 38, 60, 56, 6, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 3, 72, 8, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 1, 74, 114, 4, 20, 96, 168, 80
OFFSET
1,2
COMMENTS
Unitary convolution of the sequence of n*mu^2(n) (absolute values of A055615) and A000012. - R. J. Mathar, May 30 2011
LINKS
Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr. 74 (1960) 66-80, sequence sigma'(n).
Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
FORMULA
Multiplicative with a(p) = p+1 and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Feb 22 2004
From Álvar Ibeas, Mar 06 2015: (Start)
a(n) = a(A055231(n)) = A000203(A055231(n)).
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(1-2s)).
(End)
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(A055231(n)).
a(n) = A000203(n) / A295294(n).
a(n) = A048250(n) / A295295(n) = A048250(n) / A048250(A057521(n)), where A057521(n) = A064549(A003557(n)).
(End)
Lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k = Product_{p prime}(1 - 1/(p^2*(p+1))) = 0.881513... (A065465). - Amiram Eldar, Jun 10 2020
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 + p^(2-3*s) - p^(1-2*s) - p^(2-2*s)). - Vaclav Kotesovec, Aug 20 2021
a(n) = Sum_{d|n, gcd(d,n/d)=1} d * mu(d)^2. - Wesley Ivan Hurt, May 26 2023
MATHEMATICA
Table[Plus @@ Select[Divisors@ n, Max @@ Last /@ FactorInteger@ # == 1 && GCD[#, n/#] == 1 &], {n, 1, 79}] (* Michael De Vlieger, Mar 08 2015 *)
f[p_, e_] := If[e==1, p+1, 1]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 79] (* Amiram Eldar, Mar 01 2019 *)
PROG
(PARI) a(n) = sumdiv(n, d, d*issquarefree(d)*(gcd(d, n/d) == 1)); \\ Michel Marcus, Mar 06 2015
(Scheme)
;; This implementation utilizes the memoization-macro definec for which an implementation is available at http://oeis.org/wiki/Memoization#Scheme
;; The other functions, A020639, A067029 and A028234 can be found under the respective entries, and should likewise defined with definec:
(definec (A092261 n) (if (= 1 n) 1 (* (+ 1 (if (> (A067029 n) 1) 0 (A020639 n))) (A092261 (A028234 n))))) ;; Antti Karttunen, Nov 25 2017
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + p^2*X^3 - p*X^2 - p^2*X^2)/(1-X)/(1-p*X))[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
KEYWORD
nonn,mult
AUTHOR
Steven Finch, Feb 20 2004
STATUS
approved