login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092259 Numbers that are congruent to {4, 8} mod 12. 7
4, 8, 16, 20, 28, 32, 40, 44, 52, 56, 64, 68, 76, 80, 88, 92, 100, 104, 112, 116, 124, 128, 136, 140, 148, 152, 160, 164, 172, 176, 184, 188, 196, 200, 208, 212, 220, 224, 232, 236, 244, 248, 256, 260, 268, 272, 280, 284, 292, 296, 304, 308, 316, 320, 328, 332 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..56.

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

G.f.: 4*x*(1+x+x^2) / ( (1+x)*(x-1)^2 ).

a(n) = 4 * A001651(n).

Iff phi(n) = phi(3n/2), then n is in A069587. - Labos Elemer, Feb 25 2004

a(n) = 12*(n-1)-a(n-1) (with a(1)=4). - Vincenzo Librandi, Nov 16 2010

From Wesley Ivan Hurt, May 21 2016: (Start)

a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.

a(n) = 6n - 3 - (-1)^n.

a(2n) = A017617(n-1) for n>1, a(2n-1) = A017569(n-1) for n>1.

a(n) = -a(1-n), a(n) = A092899(n) + 1 for n>0. (End)

MAPLE

A092259:=n->6*n-3-(-1)^n: seq(A092259(n), n=1..100); # Wesley Ivan Hurt, May 21 2016

MATHEMATICA

Table[6n-3-(-1)^n, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)

PROG

(MAGMA) [n : n in [0..400] | n mod 12 in [4, 8]]; // Wesley Ivan Hurt, May 21 2016

CROSSREFS

Cf. A001651, A017617, A017569, A069587, A092899.

Fourth row of A092260.

Sequence in context: A312803 A312804 A306199 * A312805 A312806 A036693

Adjacent sequences:  A092256 A092257 A092258 * A092260 A092261 A092262

KEYWORD

nonn,easy

AUTHOR

Giovanni Teofilatto, Feb 19 2004

EXTENSIONS

Edited and extended by Ray Chandler, Feb 21 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 4 06:59 EDT 2020. Contains 333213 sequences. (Running on oeis4.)