|
|
A157697
|
|
Decimal expansion of sqrt(2/3).
|
|
8
|
|
|
8, 1, 6, 4, 9, 6, 5, 8, 0, 9, 2, 7, 7, 2, 6, 0, 3, 2, 7, 3, 2, 4, 2, 8, 0, 2, 4, 9, 0, 1, 9, 6, 3, 7, 9, 7, 3, 2, 1, 9, 8, 2, 4, 9, 3, 5, 5, 2, 2, 2, 3, 3, 7, 6, 1, 4, 4, 2, 3, 0, 8, 5, 5, 7, 5, 0, 3, 2, 0, 1, 2, 5, 8, 1, 9, 1, 0, 5, 0, 0, 8, 8, 4, 6, 6, 1, 9, 8, 1, 1, 0, 3, 4, 8, 8, 0, 0, 7, 8, 2, 7, 2, 8, 6, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Height (from a vertex to the opposite face) of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
The eccentricity of the ellipse of minimum area that is circumscribing two equal and externally tangent circles (Kotani, 1995). - Amiram Eldar, Mar 06 2022
The standard deviation of a roll of a 3-sided die. - Mohammed Yaseen, Feb 23 2023
|
|
REFERENCES
|
L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (168) on page 32.
|
|
LINKS
|
Jisho Kotani, Problem 2053, Crux Mathematicorum, Vol. 5, No. 1 (1995), p. 202; Solution to Problem 2053, by David Hankin, ibid., Vol. 22, No. 4 (1996), pp. 187-188.
|
|
FORMULA
|
Equals 1 - (1/2)/2 + (1*3)/(2*4)/2^2 - (1*3*5)/(2*4*6)/2^3 + ... [Jolley]
Equals Sum_{n>=0} (-1)^n*binomial(2n,n)/8^n = 1/A115754. Averaging this constant with sqrt(2) = A002193 = Sum_{n>=0} binomial(2n,n)/8^n yields A145439.
Has periodic continued fraction expansion [0, 1, 4; 2, 4]. (End)
|
|
EXAMPLE
|
0.8164965809277260327324280249...
|
|
MAPLE
|
evalf(sqrt(2/3)) ;
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|