|
|
A157697
|
|
Decimal expansion of sqrt(2/3).
|
|
6
|
|
|
8, 1, 6, 4, 9, 6, 5, 8, 0, 9, 2, 7, 7, 2, 6, 0, 3, 2, 7, 3, 2, 4, 2, 8, 0, 2, 4, 9, 0, 1, 9, 6, 3, 7, 9, 7, 3, 2, 1, 9, 8, 2, 4, 9, 3, 5, 5, 2, 2, 2, 3, 3, 7, 6, 1, 4, 4, 2, 3, 0, 8, 5, 5, 7, 5, 0, 3, 2, 0, 1, 2, 5, 8, 1, 9, 1, 0, 5, 0, 0, 8, 8, 4, 6, 6, 1, 9, 8, 1, 1, 0, 3, 4, 8, 8, 0, 0, 7, 8, 2, 7, 2, 8, 6, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Equals Sum_{n>=0} (-1)^n*binomial(2n,n)/8^n = 1/A115754. Averaging this constant with sqrt(2) = A002193 = Sum_{n>=0} binomial(2n,n)/8^n yields A145439.
Height (from a vertex to the opposite face) of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
|
|
REFERENCES
|
Jolley, Summation of Series, Dover (1961) eq. (168) on page 32.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..10000
D. H. Lehmer, Interesting series involving the Central Binomial Coefficient, Am. Math. Monthly 92, no 7 (1985) 449-457.
|
|
FORMULA
|
sqrt(2/3) = 1 - (1/2)/2 + (1*3)/(2*4)/2^2 - (1*3*5)/(2*4*6)/2^3 + ... [Jolley]
|
|
EXAMPLE
|
0.816496580927726056140063577...
|
|
MAPLE
|
evalf(sqrt(2/3)) ;
|
|
MATHEMATICA
|
RealDigits[Sqrt[2/3], 10, 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011*)
|
|
PROG
|
(PARI) sqrt(2/3) \\ G. C. Greubel, Mar 30 2018
(MAGMA) Sqrt(2/3); // G. C. Greubel, Mar 30 2018
|
|
CROSSREFS
|
Sequence in context: A019717 A007404 A299627 * A281785 A240982 A258146
Adjacent sequences: A157694 A157695 A157696 * A157698 A157699 A157700
|
|
KEYWORD
|
cons,easy,nonn
|
|
AUTHOR
|
R. J. Mathar, Mar 04 2009
|
|
STATUS
|
approved
|
|
|
|