

A007404


Decimal expansion of Sum_{n>=0} 1/2^(2^n).


17



8, 1, 6, 4, 2, 1, 5, 0, 9, 0, 2, 1, 8, 9, 3, 1, 4, 3, 7, 0, 8, 0, 7, 9, 7, 3, 7, 5, 3, 0, 5, 2, 5, 2, 2, 1, 7, 0, 3, 3, 1, 1, 3, 7, 5, 9, 2, 0, 5, 5, 2, 8, 0, 4, 3, 4, 1, 2, 1, 0, 9, 0, 3, 8, 4, 3, 0, 5, 5, 6, 1, 4, 1, 9, 4, 5, 5, 5, 3, 0, 0, 0, 6, 0, 4, 8, 5, 3, 1, 3, 2, 4, 8, 3, 9, 7, 2, 6, 5, 6, 1, 7, 5, 5, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Kempner shows that numbers of a general form (which includes this constant) are transcendental.  Charles R Greathouse IV, Nov 07 2017


LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000
Boris Adamczewski, The Many Faces of the Kempner Number, Journal of Integer Sequences, Vol. 16 (2013), #13.2.15.
D. H. Bailey and H. R. P. Ferguson, Numerical results on relations between fundamental constants using a new algorithm, Mathematics of Computation, Vol.53 No. 188 (1989), 649656. (Annotated scanned copy)
F. R. Bernhart & N. J. A. Sloane, Emails, AprilMay 1994
Aubrey J. Kempner, On transcendental numbers, Transactions of the American Mathematical Society 17 (1916), pp. 476482.
Simon Plouffe, Plouffe's Inverter, sum(1/2^(2^n), n=0..infinity); to 20000 digits
Simon Plouffe, sum(1/2^(2^n), n=0..infinity to 1024 digits
Jeffrey Shallit, Simple continued fractions for some irrational numbers. J. Number Theory 11 (1979), no. 2, 209217.


EXAMPLE

0.81642150902189314370....


MATHEMATICA

RealDigits[ N[ Sum[1/2^(2^n), {n, 0, Infinity}], 110]] [[1]]


PROG

(PARI) default(realprecision, 20080); x=suminf(n=0, 1/2^(2^n)); x*=10; for (n=0, 20000, d=floor(x); x=(xd)*10; write("b007404.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009
(PARI) suminf(k = 0, 1/(2^(2^k))) \\ Michel Marcus, Mar 26 2017
(PARI) suminf(k=0, 1.>>2^k) \\ Charles R Greathouse IV, Nov 07 2017


CROSSREFS

Cf. A007400, A078885, A078585, A078886, A078887, A078888, A078889, A078890, A036987.
Sequence in context: A176456 A033812 A019717 * A299627 A157697 A281785
Adjacent sequences: A007401 A007402 A007403 * A007405 A007406 A007407


KEYWORD

nonn,cons


AUTHOR

Simon Plouffe


EXTENSIONS

Edited by Robert G. Wilson v, Dec 11 2002
Deleted old PARI program Harry J. Smith, May 20 2009


STATUS

approved



