OFFSET
0,3
REFERENCES
M. Kmošek, Rozwinieçie Niektórych Liczb Niewymiernych na Ulamki Lancuchowe (Continued Fraction Expansion of Some Irrational Numbers), Master's thesis, Uniwersytet Warszawski, 1979.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..20000
Henry Cohn, Symmetry and specializability in continued fractions, Acta Arithmetica, volume 75, number 4, 1996, pages 297-320 (PDF). Also arXiv:math/0008221 [math.NT].
W. F. Lunnon, Q-D Tables and Zero-Squares, Manuscript, Jan. 1974. (Annotated scanned copy)
R. M. MacGregor, Generalizing the notion of a periodic sequence, American Math. Monthly 87 (1980), 90-102. (Annotated scanned copy)
B. Salvy, Email to N. J. A. Sloane, May 1994
Jeffrey Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), no. 2, 209-217.
Jeffrey O. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), no. 2, 209-217.
A. J. van der Poorten, An introduction to continued fractions, Unpublished.
A. J. van der Poorten, An introduction to continued fractions, Unpublished [Cached copy]
G. Xiao, Contfrac
FORMULA
From Ralf Stephan, May 17 2005: (Start)
a(0)=0, a(1)=1, a(2)=4; for n > 2:
a(8k) = a(8k+3) = 2;
a(8k+4) = a(8k+7) = a(16k+5) = a(16k+14) = 4;
a(16k+6) = a(16k+13) = 6;
a(8k+1) = a(4k+1);
a(8k+2) = a(4k+2). (End)
EXAMPLE
0.816421509021893143708079737... = 0 + 1/(1 + 1/(4 + 1/(2 + 1/(4 + ...))))
MAPLE
a:= proc(n) option remember; local n8, n16;
n8:= n mod 8;
if n8 = 0 or n8 = 3 then return 2
elif n8 = 4 or n8 = 7 then return 4
elif n8 = 1 then return procname((n+1)/2)
elif n8 = 2 then return procname((n+2)/2)
fi;
n16:= n mod 16;
if n16 = 5 or n16 = 14 then return 4
elif n16 = 6 or n16 = 13 then return 6
fi
end proc:
a(0):= 0: a(1):= 1: a(2):= 4:
map(a, [$0..1000]); # Robert Israel, Jun 14 2016
MATHEMATICA
a[n_] := a[n] = Which[n < 3, {0, 1, 4}[[n+1]], Mod[n, 8] == 1, a[(n+1)/2], Mod[n, 8] == 2, a[(n+2)/2], True, {2, 0, 0, 2, 4, 4, 6, 4, 2, 0, 0, 2, 4, 6, 4, 4}[[Mod[n, 16]+1]]]; Table[a[n], {n, 0, 98}] (* Jean-François Alcover, Nov 29 2013, after Ralf Stephan *)
PROG
(PARI) a(n)=if(n<3, [0, 1, 4][n+1], if(n%8==1, a((n+1)/2), if(n%8==2, a((n+2)/2), [2, 0, 0, 2, 4, 4, 6, 4, 2, 0, 0, 2, 4, 6, 4, 4][(n%16)+1]))) /* Ralf Stephan */
(PARI) a(n)=contfrac(suminf(n=0, 1/2^(2^n)))[n+1]
(PARI) { allocatemem(932245000); default(realprecision, 26000); x=suminf(n=0, 1/2^(2^n)); x=contfrac(x); for (n=1, 20001, write("b007400.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 07 2009
(Scheme) (define (A007400 n) (cond ((<= n 1) n) ((= 2 n) 4) (else (case (modulo n 8) ((0 3) 2) ((4 7) 4) ((1) (A007400 (/ (+ 1 n) 2))) ((2) (A007400 (/ (+ 2 n) 2))) (else (case (modulo n 16) ((5 14) 4) ((6 13) 6))))))) ;; (After Ralf Stephan's recurrence) - Antti Karttunen, Aug 12 2017
CROSSREFS
KEYWORD
nonn,cofr,easy
AUTHOR
STATUS
approved