login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007400
Continued fraction for Sum_{n>=0} 1/2^(2^n) = 0.8164215090218931...
30
0, 1, 4, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 6, 4
OFFSET
0,3
REFERENCES
M. Kmošek, Rozwinieçie Niektórych Liczb Niewymiernych na Ulamki Lancuchowe (Continued Fraction Expansion of Some Irrational Numbers), Master's thesis, Uniwersytet Warszawski, 1979.
LINKS
Henry Cohn, Symmetry and specializability in continued fractions, Acta Arithmetica, volume 75, number 4, 1996, pages 297-320 (PDF). Also arXiv:math/0008221 [math.NT].
W. F. Lunnon, Q-D Tables and Zero-Squares, Manuscript, Jan. 1974. (Annotated scanned copy)
R. M. MacGregor, Generalizing the notion of a periodic sequence, American Math. Monthly 87 (1980), 90-102. (Annotated scanned copy)
Jeffrey Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), no. 2, 209-217.
Jeffrey O. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), no. 2, 209-217.
A. J. van der Poorten, An introduction to continued fractions, Unpublished.
A. J. van der Poorten, An introduction to continued fractions, Unpublished [Cached copy]
G. Xiao, Contfrac
FORMULA
From Ralf Stephan, May 17 2005: (Start)
a(0)=0, a(1)=1, a(2)=4; for n > 2:
a(8k) = a(8k+3) = 2;
a(8k+4) = a(8k+7) = a(16k+5) = a(16k+14) = 4;
a(16k+6) = a(16k+13) = 6;
a(8k+1) = a(4k+1);
a(8k+2) = a(4k+2). (End)
EXAMPLE
0.816421509021893143708079737... = 0 + 1/(1 + 1/(4 + 1/(2 + 1/(4 + ...))))
MAPLE
a:= proc(n) option remember; local n8, n16;
n8:= n mod 8;
if n8 = 0 or n8 = 3 then return 2
elif n8 = 4 or n8 = 7 then return 4
elif n8 = 1 then return procname((n+1)/2)
elif n8 = 2 then return procname((n+2)/2)
fi;
n16:= n mod 16;
if n16 = 5 or n16 = 14 then return 4
elif n16 = 6 or n16 = 13 then return 6
fi
end proc:
a(0):= 0: a(1):= 1: a(2):= 4:
map(a, [$0..1000]); # Robert Israel, Jun 14 2016
MATHEMATICA
a[n_] := a[n] = Which[n < 3, {0, 1, 4}[[n+1]], Mod[n, 8] == 1, a[(n+1)/2], Mod[n, 8] == 2, a[(n+2)/2], True, {2, 0, 0, 2, 4, 4, 6, 4, 2, 0, 0, 2, 4, 6, 4, 4}[[Mod[n, 16]+1]]]; Table[a[n], {n, 0, 98}] (* Jean-François Alcover, Nov 29 2013, after Ralf Stephan *)
PROG
(PARI) a(n)=if(n<3, [0, 1, 4][n+1], if(n%8==1, a((n+1)/2), if(n%8==2, a((n+2)/2), [2, 0, 0, 2, 4, 4, 6, 4, 2, 0, 0, 2, 4, 6, 4, 4][(n%16)+1]))) /* Ralf Stephan */
(PARI) a(n)=contfrac(suminf(n=0, 1/2^(2^n)))[n+1]
(PARI) { allocatemem(932245000); default(realprecision, 26000); x=suminf(n=0, 1/2^(2^n)); x=contfrac(x); for (n=1, 20001, write("b007400.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 07 2009
(Scheme) (define (A007400 n) (cond ((<= n 1) n) ((= 2 n) 4) (else (case (modulo n 8) ((0 3) 2) ((4 7) 4) ((1) (A007400 (/ (+ 1 n) 2))) ((2) (A007400 (/ (+ 2 n) 2))) (else (case (modulo n 16) ((5 14) 4) ((6 13) 6))))))) ;; (After Ralf Stephan's recurrence) - Antti Karttunen, Aug 12 2017
CROSSREFS
Cf. A007404 (decimal), A073088 (partial sums), A073414/A073415 (convergents), A088431 (half), A089267, A092910.
Sequence in context: A103859 A253808 A346171 * A057696 A057697 A019921
KEYWORD
nonn,cofr,easy
STATUS
approved