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DEPARTMENT OF MATHEMATICS, NavaL PostGrADUATE ScHooL, MonTEeREY, CA 93940

GENERALIZING THE NOTION OF A PERIODIC SEQUENCE

ROBERT M. MACGREGOR

Introduction. Given the first few elements of an infinite integer sequence, we can often
inductively infer what the rest of the sequence is. For example, if we see the numbers
2,16,54,128, ...,
we might infer that the kth element should be the number 243 (see [1] or [2] for material on
inference of integer sequences). Sometimes we feel that a sequence is best described as two of
more simpler sequences which have been intertwined, for example,

1,0,2,0,3,0,...
or
1,1,4,2,9,4,16,8,....
We are going to extend the traditional definition of a periodic sequence to include sequences

which behave in a pseudo-periodic fashion. Qur first three sequences will have generalized
periods 1, 2, and 2, respectively. The sequence

1,2,3,2,3,4,3,4,5,...
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has generalized period 3. A sequence like .
1,1,2,1,2,3,2,1,2,3,4,3,2,1,...
joes not have a generalized period.

A simple programming language bas been invented to define our generally periodic
sequences. We shall see that by appropriate manipulation of the programming language we are
Jble to prove a number of properties of our sequences with relative ease. This idea of utilizing
p[ogramming languages to prove theorems may find application in other areas.

The ORVA Language. In order to make precise the notion of generalized periodicity, we have
jevised a very simple programming language, called ORVA, which generates sequences of
qumbers. ORVA stands for ORdered VAriable—each variable introduced into a program has a
unique positive integer rank. This defines a strict total ordering of all variables, which will limit
the way in which variable assignments are made. For most purposes the numerical rank of a
ariable is unimportant and only its order relative to other variables is considered.

The ORVA language has only three types of statements—assignment, output, and an
nconditional “goto.” An assignment has the form

Xy i =CpXpt Cpo1Xqt - +cyx,+ ¢

shere the variables x, to x,_, must have a lower rank than that of x,, and ¢, to ¢, are real
aumbers. The leading coefficient ¢, must be non-negative. An output statement has the form
-PRINT x,,” outputting only a single value per statement. The “goto” has the form “GO L”
shere L is a label attached to some preceding statement.

Unless otherwise specified, a subscript for a variable x, denotes its rank relative to other
vriables x;, but says nothing about its relation to a variable w;, i.e., i <j implies rank(x;) <
ank(x;) but possibly rank(x,) > rank(w;) for some w;.

Sample program:

x;i=1
Xy =

L: xy:=x,+x
Xp=x+2
PRINT x,
GO L.

The resulting output is the sequence 1,4,9,16,25,.... Typically, the first statements initialize
\iriables and the rest of the code is an infinite loop.

Definition of Generalized Periodicity.

DermviTiON. Suppose an ORVA program generates some sequence S. A reduced ORVA
“togram is one which generates S with the minimal number of “PRINT” statements in its loop.

Derinimion. The generalized period (abbreviated g.p.) of a sequence that can be generated by
1 ORVA program is defined to be the number of “PRINT” statements in the loop of a reduced
PRVA program for that sequence. We say that a sequence is generally periodic if and only if it
n be generated by an ORVA program. :

y The idea of generalized periodicity and this formulation of its definition are due to Manuel
um,

. We will now describe a construction which allows us to put ORVA programs into a form
Mech is easy to work with. :
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DerFINITION.  The normal form for a loop allows only one assignment to each variable, zero or
one print statements for each variable, and places the assignment statements first, followed by
the output statements, followed by a goto. The assignments are made to variables in order of
rank, with the highest ranking variable being assigned first.

Example:
L: xn:=cn.nxn+"' +cn.1xl+cn,0
Xp i =CpnXa1t o F 1 X1 T G0

le =cl_lxl+C0

PRINT x;,

PRINT x,_
GO L.
We require §; =i, iff j=k, and m <n.

THEOREM 1. Every ORVA loop can be put into normal form, without altering the number of
“PRINT” statements.

Proof. Given a loop of code, we will produce an equivalent loop in normal form which
generates the same output for each cycle of the loop.

First we move all PRINT statements to the end of the loop and eliminate multiple printing of
the same variable. For each statement “PRINT x,” we introduce a previously unused variable »,
with rank(w;) > rank(x,). Delete the statement “PRINT x,” and insert the code “w;: = x;; PRINT
w,.” If “PRINT x,” occurs in more than one place in the loop, a different w; must be used in
each instance. Each “PRINT w,” can be moved toward the end of the loop without altering the
value of w,. Hence, we can now move all PRINT statements to the end of the loop so that they
form a block of output statements which immediately precedes the “GO” statement. If we don't
shuffle the original order of the PRINT statements, then the result is a program which produces
the same output as before. :

We now have a loop consisting of a block of assignment statements, followed by a block of
output statements, followed by a goto. We must show how to convert an arbitrary block of |
assignment statements into an equivalent one where the assignments are to variables of
successively decreasing rank. The proof is by induction on #, the highest rank of any variable in
the block.

Base. For n=1 all assignments are to the same variable, so we have a block

Xyi=apx,+ag
x|:=b|xl+b0

X:=myx;+myg. g

We can combine the first two assignments into the single statement
x:=b(ayx,+ap)+ by (=bya,x;+ (b1ay+ by))

so we can delete the first two statements and insert this one in their place. If we continue 0 :
combine the first two assignments of each new block we will eventually be left with ont |

.

3
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qatement (e.g, X;:=cx + ¢o) which is equivalent to the entire original block of statements. This
gatement is in the desired form.

Induction Step. By hypothesis assume that any block of statements all of whose variables
pave rank less than n can be converted into a block where assignments are to variables of
successively decreasing rank, n> 1. Let rank(x;)=1.

Consider the statements

xp=ax;+a;_ X+ +ag 4))
xn:=bnxn+bn—lxn-—l+.'.+b0 (2)
and the statement
Xy =byx,+ s b X Hb(ax e +ag)+bi_yx; 1+ +bo
(=byx,+ - Hhi Xt bax;+(ba_,+b_)xi_+---
+(b,~al+b1)xl+(b,-a0+b0)). (3)

If (1) and (2) occur successively in a block and i = n then we can delete them and insert (3) in
their place. If i<n, then we insert (3), followed by (1). Using this method, we find the last
assignment in a block to x, and move it upward to the top of the block (by combining or
switching with the immediately preceding assignment and making necessary changes in the
scalars). When we reach the top, the block will consist of an assignment to x,, followed by

assignments to variables of lower rank. By the induction hypothesis these can be converted into
2 block of decreasingly ranked assignments, so that the whole block has the required form. [

We will henceforth assume that all ORVA loops initially are in normal form.

Properties of Generally Periodic Sequences. We will now prove some theorems which
describe the properties of sequences which are generated by ORVA programs.

Convention. We denote the value of a variable x after ¢ iterations of the loop by x(7). x(0) is
the value of x as the loop is about to be entered for the first time. Hence, each variable x in an
ORVA loop is associated with a function x(¢) over the non-negative integers.

THEOREM 2 (Monotonicity Theorem). For any variable x in an ORVA loop there is an integer
to such that for all t> 1, x(1) is either constant or strictly monotonic. We call such a function
ultimately monotonic (abbreviated u.m.).

Proof. The proof is an induction on 7, the highest rank of any variable in an ORVA loop in
normal form.

Base. n=1. Let x have rank 1. Then the loop has one assignment: x:=ax+b (a >0).
Case 1. a=0. Then x(f)=>b for all ¢; hence it is constant and therefore u.m.
Case 2. a=1. An easy induction proves that x(t)= bt + x(0), so x(¢) is constant if b=0 and
strictly monotonic otherwise.
Case 3. a>0,a+#1.
Claim.
b b
= ! —
x()=a (x(0)+ a—l) —.

Proof of Claim by induction on ¢:
If t=0, then a®(x(0)+ b/ (a—1))—b/(a—1)=x(0).
Assuming that the claim holds for x(¢—1) we have

x(f)y=ax(t—1)+b by definition



*

94 ROBERT M. MAcGREGOR [February
i1 b b . . .
=a(a (x(0)+ p )—a‘_l)+b by inductive hypothesis

ab
a—1

=gq' x(0)+% +b—
(=0 22

1
=a’(x(0)+ a‘fl)-'- ((—a%_)]—ai
=a’(x(0)+ fl)— afl

so the claim is true, Since a function f of the form S()=a', +k, is strictly monotonic whep
a>0, x(¢) is u.m,

First we will need a

LeMMa. Fix n. Assume that if a variable has rank <n, then i1 isu.m. Let w have rank n and let
X1 X250y X, 1 have ranks 1 through n— 1, respectively (so they are u.m. by assumption). Define the

Junction w(r) by
w(t)=c,_\x,_ W)+ Cn—2Xy () + -+ + cx (1)
where the ¢, are arbitrary constants. Then we claim thar w(f) is u.m.
Proof of Lemma. We will produce a variable z with rank n — [ such that w(l)=2z(1) for all ¢ >,
Then, since z(?) is u.m. by assumption, w(¢) will also be u.m.

Consider a loop in norma] form containing two variables x and y with n> rank (») >rank
(x). Let their assignments in the loop be

y:=ay+bx+f(x,,...,x,)
Xi=ex+g(xy,...,x)

where we are using “f” and “g” as a shorthand to denote a sum of other lower-ranking
variables. Then we can write

y(t+1)=ay(t)+bx(t)+f(t)

x(t+ l)=cx(t)+g(t).
We wish to show that z()=py(t)+ gx(#) is u.m. for any scalars p and g. Without loss of

generality assume 2(0)=py(0)+ gx(0). At the beginning of the loop containing x and y insert the
assignment

zi=az+(pb+gc— 9a)X+pf(x,...,x) + 98(xy,...,x)). (4)
Claim. z(1) =py()+q(1).

Proof by induction on t: For 1=0 the claim is true by assumption. Assume the claim holds
for z2(1—1), so that

z(t)=az(t— l)+(pb+qc—qa)x(t— l)+pf(t— l)+qg(t— I)
=a(py(t—1)+gx(1- D) +(pb+gc - gayx(r~ D+pf(1=1)+gg(1-1)

by induction hypothesis
=p(ay(1— D+bx(1— D+ 71—~ D)+ q(ex(1— D+g(1—1))
=py(t)+qx(t)
so the claim is true.
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loop. Then, since rank (z) < n, the assumption tells us that z(¢) is u.m., and hence py(t)+ gx() is
u.m.

Observe that using this method we can successively produce ¢,x, +¢;x,, (¢,x;+ ¢3%5) + 3%,
(€1, + €2X2) + €3%3) + €4X,, €tc., with each sum being u.m. Therefore we can produce a variable
; such that z(f)=c,x,()+ cpxy()+ -+ +¢,_1x,_,(1) and rank(z)=n—1. This proves the
lemma.

Now we wish to show that if

wi=agw+ta, x,_,+- - +axg+a

is the first statement in a loop in normal form and rank (w)=n, then w(/) is u.m,

Case 1. a,=0. Then the lemma can be applied to show w(#) is u.m.

Case 2. a,>0. Let f(t)=a,_,x,_(£)+--- +a;x,(1)+a,. Because the variables x, to x,_,
have rank < n, the lemma again applies to tell us that f(¢) is u.m.

A. Suppose for all t >, we have f(¢) > f(+ —1). Fix some ¢ >t,. Then, if w(¢) >w(1—1), we get
w(t+ 1) =a,w(t)+ f(1) >a,w(t— 1)+ f(t) 2 a,w(t — 1)+ f(t — 1) = w(t); hence

w()>w(t—D=w(t+1)>w(?). )
Similarly w(#) > w(t— D)=w(r+ 1) >w(?).

B. Suppose for all t >1, we have f(t) < f(t—1). Fix some ¢ >, Then, if w(t)<w(z—1), we
have w(t+ 1)=a,w(t)+ f(t) <a,w(t — 1)+ f(1) <a,w(t— 1)+ f(t — 1) =w(¢), giving

w(t) <w(t—D=w(t+1) <w(?). (ii)
Similarly w(f) < w(t— D=w(t+ 1) <w(?).

Now it is easy to show that w(f) is u.m. First determine if A or B holds for f(¢). Suppose A is
true. Then after ¢, steps we inspect w(r). If w(t+1)>w(?) for any ¢ >, we know that w(¢) is
strictly monotone increasing, by (i). Otherwise, if w(t+ 1) <w(#) for all # >, but, for some 1>,
w(t+1)> w(t), then w(¢) is constant from then on, again using (i). Lastly, it can happen that
w(t+ 1) <w(t) for all £>1,, so that w(f) is strictly monotone decreasing.

Similarly, if B holds, then we use (ii) to get an equivalent result.

This proves the induction step. 0O

COROLLARY. If a sequence has generalized period one, then it is ultimately monotonic.

The Monotonicity Theorem is a useful tool in proving properties of generally periodic
sequences. It forms the basis for an easy proof of the next theorem.

THEOREM 3. A sequence of period p has generalized period p.

Proof. Let 04,04,...,0,_1,0,,0,4,--. D€ a sequence with p as its smallest period (g;,=0;,,). We
can generate this sequence with an ORVA loop that uses p variables equal to constants
Og-..>0;—1, and has p PRINT statements.

Let us assume that an ORVA program exists which generates 6¢,01,0;- .- using m <p PRINT
statements in its loop. Assuming that the loop is in normal form, then there are m different
variables z,,...,z, which are printed at the end of each cycle in the loop.

Consider any z,. By the Monotonicity Theorem z,(¢) is u.m. If z,(f) was ultimately strictly
increasing or decreasing, it would take on more than p different values, and hence could not be
printing correct values for the sequence 0,0,.... We conclude that for all i=1,...,m, z(¢) is
constant (ultimately). Hence the sequence 2,(0),250), . .., 24(0), 2;(1),2,(1),... has period m be-
cause z,(#)=z(t + 1) for all 1 >1,. But m <p, and we assumed that we were generating a sequence
of period p. Contradiction. O

|
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It is clearly desirable that Theorem 3 be true, if our definition for a generalized period is to be
a good one. We can now see why certain constraints were placed upon the ORVA language:

REMARK. If we allow the leading coefficient of the general assignment statement to be
negative, then Theorems 2 and 3 don’t hold. Example:

x:=1

L xi=-x+1
PRINT x
GO L.

This program outputs the period two sequence 0, 1,0, 1,... with only one PRINT statement in
its loop. x(¢) is not u.m.

REMARK. If we eliminate the rankings, we again can find a counterexample to Theorems 2
and 3. Example: :

x:=1
y:=2
L: z:=x
x:=y
yi=z
PRINT:
GO L.
This program outputs 1,2,1,2,... with only one PRINT statement.
DEFINITION. For any numerical sequence S =0y,0y,0;,... the sequence of differences is AS =0,
Y —0p0,— 0,0,—C
'] 00> 1,03 23000
"
4 Taking differences is commonly used as an aid for inferring a sequence. The following
{ theorem complements this technique.

THEOREM 4. If a sequence S has generalized period p, then the corresponding sequence of
differences AS has g.p. p. Conversely, if a sequence T with 8.p. p is considered a sequence of
differences, then any sequence S such that AS=T must have g.p. p.

Proof. Suppose we are considering a sequence where the (reduced) ORVA loop prints
successively the variables Z1,2y,...,Z, in each iteration. Suppose z, is assigned in the loop by the
statement

Zpi=czpte,x,+ - + ¢
and w.l.o.g. assume that 2y,...,Z, are initialized before entering the loop.

Case 1. p=1. We construct an ORVA loop to generate successive differences as follows: Add
the statement “w: = —z,” at the top of the loop, where w is a new variable. Insert “w: = w + z”
directly before “PRINT z,,” and change “PRINT z,” to “PRINT w.” The loop now outputs
w(t)=z,(1)—z,(1—1), as desired.

Case 2. p> 1. Create p new variables Wi,...,W, and at the beginning of the loop add

wyi= 23— 2,
W2: = 23 — 2y
wp—l =Zp—zp_1
- Wo!=CZ\+ CpX,+Cpy X+ - +co—2,.
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Delete all PRINT statements and insert “PRINT wy;--- ; PRINT w,” at the end of the loop.
This prints the sequence of differences.

Note that we have shown that g.p. AS)<gp- (S)

Now assume that a sequence of differences AS is generated by a reduced ORVA loop
printing the variables w,..., W, and the original sequence S started with o,. Before the loop
insert “z;: = 0o; PRINT z,.” Let zy,..+32Zm be new variables. Delete all “PRINT w,” statements.

Case 1. m=1. At the end of the loop insert “z;:=2zy+wy; PRINT z,.”

Case 2. m> 1. At the end of the loop add

zi =2+ W,

2 = I T Wmo1
zp=5tw,t o Wy

PRINT z,

PRINT 2,
PRINT z,

This new loop outputs the original sequence S. We see g.p(S) <m=g.p(AS). Hence g.p(S)=
£pAS). O

DEFINITION. Let S=0¢,01,02,--- - Then —S= —0g, — 01, — 02+ Let T=74Ty T2 - Then
S+ T=0g+ 700+ T, 02T T2-- -

TaEOREM 5. g.p(S)=gp(~ S).

Proof. In the program generating S replace each statement “PRINT x;” by “wi=—Xx;
PRINT w,,” where w; is a new variable. Then g.p.(—S)<g.p.(S). But then g.p.(S)=
gp(— (= SN < &P~ ) <&pLS) d

THEOREM 6. If g.p.(S)= g.p(T)=p then gp(S+T)<p.

Proof. Assume w.1.0.g. that the programs for S and T do not have any variables in common.
Form a new loop consisting of all code from the loop for S and the loop for 7. Assuming that
variables §y,...,5, and fy,..., 6, are printed, delete all PRINT statements and in place of each
PRINT s, and PRINT ¢ we insert “w;i=s;+4; PRINT w,” where w; is a new variable.

Similarly altering the initial code (before the loop) leads to a program for S+T with p print
statements. a

Note that g.p(S+(—S)N= 1 for all sequences S. We will show later that g.p.(S+T) divides p
when g.p.(S)=gp(T)=p.
COROLLARY 6. If g.p(S)= g.p(T)=p, then gp(S—T)<p.

TuroreM 7. If x; is a oariable in an ORVA program, then there exist positive real constants
LA .- osAy and polynomials Po(D)s -+ -sPml0) such that x‘(l)=p0(t)+p,(t)}\,’+ ceo +p (ONL. The
numbers A, .- -»Am correspond to non-zero leading coefficients in the assignment statements.

Proof. Let X(t) denote the vector <l,x1(t),...,x,,(l)> where x, to x, are variables in an ORVA
loop in normal form (rank(x;) < rank(x; ). Each iteration of the loop is equivalent to 2 matrix
transformation X=A-x(¢)+ B, where A is an (n+1) (n+1) lower triangular matrix. Induction
will prove that 4 L. x(0)= x(1).

The diagonal elements of A are also its eigenvalues, and since a diagonal element corresponds
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to the non-negative leading coefficient of an assignment or equals one, the eigenvalues are

non-negative. There exist matrices E and T such that 4 = T~'ET and E is in Jordan-canonicg|

form, with the eigenvalues of 4 being the diagonal elements of E. Then X()=T~'E'Tx(0).
Suppose E is a strictly diagonal matrix, say

A O Af O

A ¥
E= ) and E'=

O A, O A

Then
x,(1)=<0,...,0, L,0,...,0>T~'E'Tx(0)
1
ith place

={ay,...,a,> -E*{by,...,b,> for some a;’s and b;’s
=a\bA{+--- +a,b )\

which is in the proper form.
Next take the case that E is a Jordan block, say

(A 1 1
Al O
E=J= )
'®) .
A
i Al

Using the bionomial identity (’;)=( 1= ll)+(’;1) and interpreting (’;) as 0 if m>r, we
m—
can prove by induction that

F}\; ! (2())\1—2 (;)}\1—3 ('tl))\l—n ]

e (e (e

e o]
Then

x,(t)=<a,,...,a,,>-J’-(bl,...,b,,>
=<a|’-~-,an>‘<27:5bi+l(;)>\l_i»27:gb:+l(f)}"—i’---’bn)\'>
=p(H)A’ for some polynomial p(¢).

Finally, in the most general case where E contains Jordan sub-blocks, a variable X; is the sum
of elements of the first two types, sopy(DA{+ - - - +p, (DA, = x,(¢) for some p’s and As. O

The outline for this proof comes from another presented by Pravin Varaiya.

THEOREM 8. Given any function of t of the form PADA{+ - +p (DN where A >0 for
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i=1,...,m, we can produce an ORVA program containing a variable w such that w(t) is that
ﬁmction for t20.

Proof. We will prove the theorem for the case w(t)=1t*\’. The more general case follows
casily. Proof by induction on k:

Base. k=0. Let w(0)=1 and place “w:=Aw" in the loop. Then we have w(t)=A".

Induction Step. k>0. Assume we have variables Xg,...,Xg—1 Such that x,(£)=1t'A" for i<k.
Let w(0)=0. At the top of the loop containing the x; add the statement w:=>\w+(11‘ Ay

4o +(i)>\x0.

Claim. w(t)=1t*\".

Proof of Claim by induction on : If 1=0, then w(0) = 0 = 0*\°. Assume the claim true for
the first ¢ values of w.

w(t+1)=(16)>\t">\'+(11‘)>\1"“>\’+--- +(’;)>\z°w by hypothesis

e (B (Bt (4]

=A I+ D

This proves the claim and hence the theorem. |

For the following definitions let R=pg,p1,02-.- and S=00,01,0,.-. be generally periodic
sequences.

DEerFINITION. R and S are equivalent (R =S) if there exist constants ig and jo such that
Pig+i = Tjo+i for alli>0.
For example, suppose R=0, 1,2,3,... and $=2,3,4,.... Then R =S.

DEFINITION. R is contained in S(R CS) if there exist constants iy and j, such that p;; =g, and
an increasing function f such that f(0)=0 and p; +;= %+ s>

Example: 1If R= 1,2,4,8,... and S=1,2,3,..., then RCS.

DeriniTION. If the function f above can be represented as  f(H)=m! where m > 1, then we say

that R is an m-section of S. Alternatively, we can say that S is m-times as dense as
R (D(S/R)=m).

Example: Let R= 1,4,16,64,... and $=1,2,4,8,16,.... Then R is a 2-section of S, D(S/R)
=2.

Notation. Let (r())i%o denote the sequence r(0),r(1),r(2), ... generated by a variable r.
Suppose R=r({){Zo and S=(s(1)=o. If Ris an m-section of S, then we have r(ig+ =35+
mi) for all 1> 0. We note a corollary to Theorem 7.

COROLLARY 7. If S=(s())iZo has g.p. 1, then there exist constants Ay,.--,N, and polynomials
pi(1), ..., pa(2) such that s(=p (O + - +p, (DA,

Using Theorem 8 we can derive another result.
COROLLARY 8. Let S have g.p- 1. Then, given an integer m 2 1, each m-section of S has g.p. 1.

Proof. Let S=(s()i=o and suppose R=(r(2));Zo is an m-section of S with r(ig+)=s(o+
mt) for all £>0. Then for t > iy, r(f)=s(ot m(t—ig))- By Corollary 7 there exist Ap--->A, and
py(1),...,p,(t) such that '

0= o e (= iAokt igNT T
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=PI+ - pL (DA,
s0 R has g.p. 1 by Theorem 8. O
THEOREM 9. Let R be a sequence with generalized period 1. For each integer m > 1 there exisis

a unique (up to equivalence) sequence S with g.p. 1 such that R is an m-section of S (D(S/R)=
m).

Example: 1f a sequence 1,i,,9,i5,25,i5,... is known to have g.p. 1, then the sequence L
i1,z 03,... must be equivalent to the sequence 4, 16,36, ...

Proof. Let R=(r())%o. By Theorem 7 there exist constants Ap...,A, and polynomials
Pr(1),....p,(1) such that r(ty=p,()A{+ - - - +p (DAL,

Existence: Fix m > 1. By Theorem 8 there exists a sequence

S=(P(FN/™+ - +p. (N )

with g.p. 1. Then D(S/R)=m.

Uniqueness: Suppose S=(s(1)2, and S’'=(s(#))2, both have gp. 1 and D(S/R)=
D(S’/ R)=m. By definition there exist constants iy, jo, and j; such that r(iy+ im)=s(j,+ im)=
5'(Jo+ im) for all i > 0. Consider the sequence S— S’. By the corollary to Theorem 6, S — S’ has L

g.p- 1. Every mth term of this sequence is zero. Since it is ultimately monotonic, it must be
equivalent to the sequence 0,0,0,.... Hence S=S". O

Before we prove our final theorem we need a lemma.

LEMMA. Let R, S, and W be sequences with g.p. 1, such that W CR and W C S. Suppose W is a

W p-section of R and W is a g-section of S (D(R/W)=p and D(S/W)=gq). Then p divides q }
implies RCS.
Proof. Let g= mp where m is a positive integer. By Theorem 7 W is equivalent to a sequence
(Pr(DA + -+ + P (DADZ.. By Theorem 8 there exist sequences
R'=(pi(t/PIN/P+ - +pu(t/PINP) g
and (
4

S'=(pi(t/ DN+ +p(t/ DN/

each having g.p. 1. Since S'=(p,(t/mp)A//™ + .. +p,(t/ mp)\/™)=.,, we observe that R’ is
an m-section of S’; hence R'C S’. I'

By construction D(R’/W)=p=D(R/W) and D(S’/W)=q=D(S/W): so by Theorem 9 |
we have R=R’ and S =S’. But then RCS. O

We may refer to a generalized period of a sequence to mean the number of print statements
in the loop of a (possibly) unreduced ORVA program for that sequence. The next theorem
shows that all generalized periods of a sequence must be integral multiples of the fundamental
(or smallest) generalized period. This is in accord with the similar result for periodic sequences,

and hence strengthens our belief that we have a good definition for the generalized period of a
sequence.

THEOREM 10. Let X have a g.p. of p and let Y have a g.p. of q. Let d be the greatest common
divisor of p and q. If X =Y, then there exists a sequence Z with a g.p. of d such that Z=X =Y.

Proof. We will assume that X =Y and find an apbropriate Z such that Z= X =Y. The result \
W for equivalence follows.

]
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1980] GENERALIZING THE NOTION OF A PERIODIC SEQUENCE 101

Let X=((x,~(t))f:0l)f°_0 and Y=((.Yi(’))7:(;)7?-0~ Let X; denote (xi(’))fo-o and Yj=()’j(l))7?-0, SO
that each X; is a p-section of X,and Y;1sa g-section of Y. For convenience let p(0), (1), #(2)s - --
denote the sequence xo(O),x,(O),...,x,,_l(O),xo(l),xl(l),... = X = Y. Note that

x(1)=p(pt+1) foralli>0

and
y()=p(qt+ i) foralli>0.

Next define a sequence Ag=(ao{Dizo with a(?) = xo(g) = p.(pql)=y0(pt) for all ¢ > 0. Intui-
\ively, we chose points where X, and Yo “intersect.” We have Ay C X, with D(Xo/ Ag)=4 and
4,C Yo with D(Yo/Ao)=P- Corollary 8 tells us that X, and Yo and hence A, all have g.p- 1.
we now use Theorem 9 to find the unique sequence with g.p. 1 Zo=(zo()i=0 which is pg/d
\imes as dense as Ao, D(Zo/ Ao)=P4 /d. Because p and g both divide pq/d the preceding

lemma tells us that Xo < Zo and YoC Zo We would like to show that X, C Z, whenever d divides

i i=0,...,p— L.
Pick any such i, setting i = cd. There exist constants @’ and b’ such that d= a'p+b'q. Either

2 <0<b or b <0<a’. Wlo.g. assume the former inequality holds, so we set a= — ca’ ,b=cb’
wgetap+i= bgq with a and b non-negative.

We now look at points where X, and Yy “intersect.” Define Bo=(bo(t))7=0 with b(f)=
yolb+1p)= p(bq + tpd) = ulap +i+ 1gp)=x{a+ tg). Using the lemma freely we have

D(¥o) Agy=p and D(Zo] gy = implies D(Zo/ Yo)= 1

D(Yo/ Bo)=p and D(Zo/ Y0) = 4 mplies D(Zo/ Bo) = 2
D(X./Bo)=4 2nd D(Zo/ Bo)= ﬂd‘l implies D(Zo/ X)= %'

This requires that X;C Zo, a8 desired.
We now know that X, C Z, for i=0,d,2d,...,p—d. For each such X;, D(ZO/X,-)=p/d, and

there are p/d different such X;'s; hence
Zo=XO(O),Xd(O),XM(O),...,Xp_,,(O),Xo(l),...,

= p(0), u(d), p(2d)s -

Therefore the sequence p(O),p(d),p.(2d),... has g.p. 1.
In a similar manner we can define a sequence A, with a,()=xy(g)= yi(pt) construct

Z, such that D(Z,/ A)=pq/ 4 and eventually conclude that the sequence p(D),  (d+ 1),
ud+1),... bas gp- 1 Continuing in this fashion we will eventually have sequences

ZoZyye- s Za- each with g.p. | such that Z=((z)i=0)iz0=X= Y. 0O
CoroLLARY 10.1. If a sequence has a generalized period of 4 and its fundamenlal period is P,
then p divides q.
CorOLLARY 10.2. Le! S and T be sequences with g.p.(S)=g.p.(T y=p. Then gp(S+T)
divides p.
Proof. In Theorem 6 we produced a program for S+ T which had p PRINT statements in its
loop. By Theorem 10gp(S+T) divides p- O
Conclusion. A significant number of properties of periodic sequences carry over 10 the

generalized case. We feel that they constitute a good justification for choosing our particular
definition of a generalized period. The ORVA language has proved to be a useful tool for

dealing with generally periodic sequences.
There are sequences, such as the factorial sequence 1,2,6,24,..., ‘which are not generally

periodic but are not particularly complex. Possibly our present definition can be extended to
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include a broader class of sequences. Some research in this direction was greeted by a large

increase in complexity, so that a further generalization of the definition of periodicity constitutes
a non-trivial problem.
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A GEOMETRIC METHOD OF PHASE PLANE ANALYSIS

DUANE W. DETEMPLE

Introduction. The real first-order linear autonomous homogeneous system of differential

equations in the plane is
xX\_ Afx _(a b
(5)=2G) e=(2 %) .

where the dot denotes the derivative with respect to the real variable ¢, and a, b, ¢, d are real
constants. The usual method to study (1) is to introduce a real linear change of variables which
transforms the coefficient matrix Q to a canonical (say, real Jordan) form.

Our purpose here is to replace the algebraic approach by a geometric one. The development
leads to a construction procedure by which the phase portrait can be quickly and accurately
drawn in the original x, y-plane with no calculations whatever required.

In Section 1 the real differential system is recast into an equivalent complex form involving
both z=x+iy and the conjugate variable z= x —iy. Employing conjugate variable methods we
derive in Section 2 some geometric results which are important in the sequel. In particular, the
invariants of the coefficient matrix Q are identified geometrically in Section 3. In Section 4 the
geometric description and construction procedures for phase portraits is illustrated. The con-
cluding Section 5 shows the existence and construction of a homothetic family of conics isogonal
to the trajectory system; the principal analytical tool in this section is the Schwarz function [2].

1. Complexification. The real plane is converted into the complex plane C by assigning the
complex number z = x + iy to the point (x,y) in the real plane. To invert this transformation, it 1s
convenient to introduce the complex conjugate z=x—iy. In matrix form the transformation
from real to conjugate coordinates can be written

zZ\_ x =1 i
(5)-#G) »=(1 _)) @
The real differential system (1) can be recast into the equivalent complex form

(st rmmen=(3 2.
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