login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073414
Numerator of the n-th convergent to Sum_{k>=0} 1/2^(2^k).
3
0, 1, 4, 9, 40, 169, 1054, 4385, 9824, 43681, 271910, 587501, 2621914, 16318985, 67897854, 287910401, 643718656, 2862785025, 17820428806, 38503642637, 171834999354, 725843640053, 4526896839672, 18833430998741, 42193758837154
OFFSET
1,3
LINKS
FORMULA
a(n) = a(n-1) A007400(n-1) + a(n-2). - Robert Israel, Jun 14 2016
MAPLE
a007400:= proc(n) option remember; local n8, n16;
n8:= n mod 8;
if n8 = 0 or n8 = 3 then return 2
elif n8 = 4 or n8 = 7 then return 4
elif n8 = 1 then return procname((n+1)/2)
elif n8 = 2 then return procname((n+2)/2)
fi;
n16:= n mod 16;
if n16 = 5 or n16 = 14 then return 4
elif n16 = 6 or n16 = 13 then return 6
fi
end proc:
a007400(0):= 0: a007400(1):= 1: a007400(2):= 4:
A[1]:= 0: A[2]:= 1:
for n from 3 to 100 do
A[n]:= A[n-1]*a007400(n-1)+A[n-2];
od:
seq(A[n], n=1..100); # Robert Israel, Jun 14 2016
MATHEMATICA
(* b is a007400 *)
b[n_] := b[n] = Module[{n8, n16}, n8 = Mod[n, 8]; Which[n8 == 0 || n8 == 3, Return[2], n8 == 4 || n8 == 7, Return[4], n8 == 1, Return[b[(n+1)/2]], n8 == 2, Return[b[(n+2)/2]]]; n16 = Mod[n, 16]; Which[n16 == 5 || n16 == 14, Return[4], n16 == 6 || n16 == 13, Return[6]]];
b[0] = 0; b[1] = 1; b[2] = 4;
a[1] = 0; a[2] = 1;
a[n_] := a[n] = a[n-1] b[n-1] + a[n-2];
Array[a, 100] (* Jean-François Alcover, Jun 10 2020, after Robert Israel *)
PROG
(PARI) a(n)=component(component(contfracpnqn(contfrac(sum(k=0, 20, 1/2^(2^k)), n)), 1), 1)
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Benoit Cloitre, Aug 23 2002
STATUS
approved