login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370602
a(n) = n! * Sum_{d|n} 1/((d-1)! * (n/d)^(d-1)).
2
1, 4, 9, 40, 125, 1056, 5047, 51248, 383049, 4364020, 39916811, 576885552, 6227020813, 99634224704, 1334500527375, 23592657488416, 355687428096017, 7202890599354468, 121645100408832019, 2679832071577681040, 51612375654647808021, 1226182612423511392672
OFFSET
1,2
FORMULA
a(n) = n * A005225(n).
If p is prime, a(p) = p + p!.
E.g.f.: Sum_{k>0} x^k * exp(x^k/k).
PROG
(PARI) a(n) = n!*sumdiv(n, d, 1/((d-1)!*(n/d)^(d-1)));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k*exp(x^k/k))))
CROSSREFS
Cf. A005225.
Sequence in context: A238420 A302179 A370603 * A354738 A073414 A085110
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 23 2024
STATUS
approved